We present a study on the catalytic reduction of 4-nitrophenol (Nip) to 4-aminophenol (Amp) by sodium borohydride (BH 4
−) in the presence of metal nanoparticles in aqueous solution. This reaction which proceeds via the intermediate 4-hydroxylaminophenol has been used abundantly as a model reaction to check the catalytic activity of metallic nanoparticles. Here we present a full kinetic scheme that includes the intermediate 4-hydroxylaminophenol. All steps of the reaction are assumed to proceed solely on the surface of metal nanoparticles (Langmuir−Hinshelwood model). The discussion of the resulting kinetic equations shows that there is a stationary state in which the concentration of the intermediate 4-hydroxylaminophenol stays approximately constant. The resulting kinetic expression had been used previously to evaluate the kinetic constants for this reaction. In this stationary state there are isosbestic points in the UV/vis-spectra which are in full agreement with most published data. We compare the full kinetic equations to experimental data given by the temporal decay of the concentration of Nip. Good agreement is found underlining the general validity of the scheme. The kinetic constants derived from this analysis demonstrate that the second step, namely the reduction of the 4-hydroxylaminophenol is the rate-determining step.
We present a detailed study of the catalytic activity of Au/Pd nanoalloys with Au : Pd molar ratio 75 : 25 synthesized using spherical polyelectrolyte brushes (SPB) as carrier system. The reduction of 4-nitrophenol (Nip) by sodium borohydride (BH4(-)) has been used as a model reaction. This reaction proceeds in two steps: 4-nitrophenol is first reduced to 4-hydroxylaminophenol which in a second step is reduced to the final product 4-aminophenol. Both steps of the reaction proceed on the surface of the nanoparticles (Langmuir-Hinshelwood-mechanism). We use this model to analyze the experimental data obtained by catalysis with the Au/Pd-nanoalloys. Good agreements between theory and experiments were found up to 30% conversion of Nip. The kinetic parameters were compared with the data derived from neat Au and Pd nanoparticles immobilized in the same SPB carrier system. The addition of 25% molar ratio of Pd to the nanoalloys increases the reaction rate of the first step nearly 10 times compared with that of SPB-Au and 60 times compared with that of SPB-Pd. Analysis of the nanoalloy by high-resolution transmission electron microscopy suggests that the surface defects of the nanoalloys play an important role for the enhanced catalytic activity.
Experimental and kinetic modelling studies are presented to investigate the mechanism of 3,3′,5,5′‐tetramethylbenzidine (TMB) oxidation by hydrogen peroxide (H2O2) catalyzed by peroxidase‐like Pt nanoparticles immobilized in spherical polyelectrolyte brushes (SPB−Pt). Due to the high stability of SPB−Pt colloidal, this reaction can be monitored precisely in situ by UV/VIS spectroscopy. The time‐dependent concentration of the blue‐colored oxidation product of TMB expressed by different kinetic models was used to simulate the experimental data by a genetic fitting algorithm. After falsifying the models with abundant experimental data, it is found that both H2O2 and TMB adsorb on the surface of Pt nanoparticles to react, indicating that the reaction follows the Langmuir–Hinshelwood mechanism. A true rate constant k, characterizing the rate‐determining step of the reaction and which is independent on the amount of catalysts used, is obtained for the first time. Furthermore, it is found that the product adsorbes strongly on the surface of nanoparticles, thus inhibiting the reaction. The entire analysis provides a new perspective to study the catalytic mechanism and evaluate the catalytic activity of the peroxidase‐like nanoparticles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.