The Mediterranean Sea is a marine biodiversity hot spot. Here we combined an extensive literature analysis with expert opinions to update publicly available estimates of major taxa in this marine ecosystem and to revise and update several species lists. We also assessed overall spatial and temporal patterns of species diversity and identified major changes and threats. Our results listed approximately 17,000 marine species occurring in the Mediterranean Sea. However, our estimates of marine diversity are still incomplete as yet—undescribed species will be added in the future. Diversity for microbes is substantially underestimated, and the deep-sea areas and portions of the southern and eastern region are still poorly known. In addition, the invasion of alien species is a crucial factor that will continue to change the biodiversity of the Mediterranean, mainly in its eastern basin that can spread rapidly northwards and westwards due to the warming of the Mediterranean Sea. Spatial patterns showed a general decrease in biodiversity from northwestern to southeastern regions following a gradient of production, with some exceptions and caution due to gaps in our knowledge of the biota along the southern and eastern rims. Biodiversity was also generally higher in coastal areas and continental shelves, and decreases with depth. Temporal trends indicated that overexploitation and habitat loss have been the main human drivers of historical changes in biodiversity. At present, habitat loss and degradation, followed by fishing impacts, pollution, climate change, eutrophication, and the establishment of alien species are the most important threats and affect the greatest number of taxonomic groups. All these impacts are expected to grow in importance in the future, especially climate change and habitat degradation. The spatial identification of hot spots highlighted the ecological importance of most of the western Mediterranean shelves (and in particular, the Strait of Gibraltar and the adjacent Alboran Sea), western African coast, the Adriatic, and the Aegean Sea, which show high concentrations of endangered, threatened, or vulnerable species. The Levantine Basin, severely impacted by the invasion of species, is endangered as well.This abstract has been translated to other languages (File S1).
The understanding of fish communities' changes over the past centuries has important implications for conservation policy and marine resource management. However, reconstructing these changes is difficult because information on marine communities before the second half of the 20th century is, in most cases, anecdotal and merely qualitative. Therefore, historical qualitative records and modern quantitative data are not directly comparable, and their integration for long-term analyses is not straightforward. We developed a methodology that allows the coding of qualitative information provided by early naturalists into semi-quantitative information through an intercalibration with landing proportions. This approach allowed us to reconstruct and quantitatively analyze a 200-year-long time series of fish community structure indicators in the Northern Adriatic Sea (Mediterranean Sea). Our analysis provides evidence of long-term changes in fish community structure, including the decline of Chondrichthyes, large-sized and late-maturing species. This work highlights the importance of broadening the time-frame through which we look at marine ecosystem changes and provides a methodology to exploit, in a quantitative framework, historical qualitative sources. To the purpose, naturalists' eyewitness accounts proved to be useful for extending the analysis on fish community back in the past, well before the onset of field-based monitoring programs.
As a discipline, marine historical ecology (MHE) has contributed significantly to our understanding of the past state of the marine environment when levels of human impact were often very different from those today. What is less widely known is that insights from MHE have made headway into being applied within the context of present-day and long-term management and policy. This study draws attention to the applied value of MHE. We demonstrate that a broad knowledge base exists with potential for management application and advice, including the development of baselines and reference levels. Using a number of case studies from around the world, we showcase the value of historical ecology in understanding change and emphasize how it either has already informed management or has the potential to do so soon. We discuss these case studies in a context of the science–policy interface around six themes that are frequently targeted by current marine and maritime policies: climate change, biodiversity conservation, ecosystem structure, habitat integrity, food security, and human governance. We encourage science–policy bodies to actively engage with contributions from MHE, as well-informed policy decisions need to be framed within the context of historical reference points and past resource or ecosystem changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.