The world’s population is aging: the expansion of the older adult population with multiple physical and health issues is now a huge socio-economic concern worldwide. Among these issues, the loss of mobility among older adults due to musculoskeletal disorders is especially serious as it has severe social, mental and physical consequences. Human body joint monitoring and early diagnosis of these disorders will be a strong and effective solution to this problem. A smart joint monitoring system can identify and record important musculoskeletal-related parameters. Such devices can be utilized for continuous monitoring of joint movements during the normal daily activities of older adults and the healing process of joints (hips, knees or ankles) during the post-surgery period. A viable monitoring system can be developed by combining miniaturized, durable, low-cost and compact sensors with the advanced communication technologies and data processing techniques. In this study, we have presented and compared different joint monitoring methods and sensing technologies recently reported. A discussion on sensors’ data processing, interpretation, and analysis techniques is also presented. Finally, current research focus, as well as future prospects and development challenges in joint monitoring systems are discussed.
A study of some reported superharmonic LC quadrature voltage-controlled oscillator (LC-QVCO) is performed in which it is shown that robustness of the quadrature oscillation varies depending on the coupling configuration. Next, a new superharmonic LC-QVCO is proposed in which the common source node in either of two identical cross-connected LC-VCOs is coupled via a capacitor to the node common between the two varactors in the LC-tank of the other LC-VCO. As a result of connecting common mode nodes, the currents flowing through the two coupling capacitors are comprised of only the even harmonics. In the proposed coupling configuration there exists a closed loop through which the second harmonic signals circulate. A qualitative argument is presented to justify the robustness of the quadrature nature of the proposed QVCO by applying the Barkhausen phase criterion to the second harmonic signals in the loop. Since the coupling devices are only two capacitors, no extra noise sources and power consumption are added to the core VCOs. A Monte-Carlo simulation showed that the phase error of the proposed QVCO caused by device mismatches is no more than 1°. Also, generalizing this method to several numbers of VCOs in a loop, multiphase signals can be generated. The proposed circuits were designed using a 0.18-lm RF CMOS technology and simulation results are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.