Enzymes catalyzing asymmetric carboligation reactions typically show very high substrate specificity for their nucleophilic donor substrate components. Structure-guided engineering of the thermostable transketolase from Geobacillus stearothermophilus by directed in vitro evolution yielded new enzyme variants that are able to utilize pyruvate and higher aliphatic homologues as nucleophilic components for acyl transfer instead of the natural polyhydroxylated ketose phosphates or hydroxypyruvate. The single mutant H102T proved the best hit toward 3-methyl-2-oxobutyrate as donor, while the double variant H102L/H474S showed highest catalytic efficiency toward pyruvate as donor. The latter variant was able to complement the auxotrophic deficiency of Escherichia coli cells arising from a deletion of the dxs gene, which encodes for activity of the first committed step into the terpenoid biosynthesis, offering the chance to employ a growth selection test for further enzyme optimization.
BackgroundAnthocyanins are polyphenolic pigments which provide pink to blue colours in fruits and flowers. There is an increasing demand for anthocyanins, as food colorants and as health-promoting substances. Plant production of anthocyanins is often seasonal and cannot always meet demand due to low productivity and the complexity of the plant extracts. Therefore, a system of on-demand supply is useful. While a number of other (simpler) plant polyphenols have been successfully produced in the yeast Saccharomyces cerevisiae, production of anthocyanins has not yet been reported.ResultsSaccharomyces cerevisiae was engineered to produce pelargonidin 3-O-glucoside starting from glucose. Specific anthocyanin biosynthetic genes from Arabidopsis thaliana and Gerbera hybrida were introduced in a S. cerevisiae strain producing naringenin, the flavonoid precursor of anthocyanins. Upon culturing, pelargonidin and its 3-O-glucoside were detected inside the yeast cells, albeit at low concentrations. A number of related intermediates and side-products were much more abundant and were secreted into the culture medium. To optimize titers of pelargonidin 3-O-glucoside further, biosynthetic genes were stably integrated into the yeast genome, and formation of a major side-product, phloretic acid, was prevented by engineering the yeast chassis. Further engineering, by removing two glucosidases which are known to degrade pelargonidin 3-O-glucoside, did not result in higher yields of glycosylated pelargonidin. In aerated, pH controlled batch reactors, intracellular pelargonidin accumulation reached 0.01 µmol/gCDW, while kaempferol and dihydrokaempferol were effectively exported to reach extracellular concentration of 20 µM [5 mg/L] and 150 µM [44 mg/L], respectively.ConclusionThe results reported in this study demonstrate the proof-of-concept that S. cerevisiae is capable of de novo production of the anthocyanin pelargonidin 3-O-glucoside. Furthermore, while current conversion efficiencies are low, a number of clear bottlenecks have already been identified which, when overcome, have huge potential to enhance anthocyanin production efficiency. These results bode very well for the development of fermentation-based production systems for specific and individual anthocyanin molecules. Such systems have both great scientific value for identifying and characterising anthocyanin decorating enzymes as well as significant commercial potential for the production of, on-demand, pure bioactive compounds to be used in the food, health and even pharma industries.Electronic supplementary materialThe online version of this article (10.1186/s12934-018-0951-6) contains supplementary material, which is available to authorized users.
Microbial reduction of nitrous oxide (N O) is an environmentally significant process in the biogeochemical nitrogen cycle. However, it has been recognized only recently that the gene encoding N O reductase (nosZ) is organized in varying genetic contexts, thereby defining clade I (or 'typical') and clade II (or 'atypical') N O reductases and nos gene clusters. This study addresses the enzymology of the clade II Nos system from Wolinella succinogenes, a nitrate-ammonifying and N O-respiring Epsilonproteobacterium that contains a cytochrome c N O reductase (cNosZ). The characterization of single non-polar nos gene deletion mutants demonstrated that the NosG, -C1, -C2, -H and -B proteins were essential for N O respiration. Moreover, cells of a W. succinogenes mutant lacking a putative menaquinol-oxidizing Rieske/cytochrome bc complex (QcrABC) were found to be incapable of N O (and also nitrate) respiration. Proton motive menaquinol oxidation by N O is suggested, supported by the finding that the molar yield for W. succinogenes cells grown by N O respiration using formate as electron donor exceeded that of fumarate respiration by about 30%. The results demand revision of the electron transport chain model of clade II N O respiration and challenge the assumption that NosGH(NapGH)-type iron-sulfur proteins are menaquinol-reactive.
Dimethylmenaquinone (DMMK), a prevalent menaquinone (MK) derivative of uncertain function, is characteristic for members of the class Coriobacteriia. Such bacteria are frequently present in intestinal microbiomes and comprise several pathogenic species. The coriobacterial model organism Adlercreutzia equolifaciens was used to investigate the enzymology of DMMK biosynthesis. A HemN-like class C radical S-adenosylmethionine methyltransferase (MenK2) from A. equolifaciens was produced in Wolinella succinogenes or Escherichia coli cells and found to methylate MK specifically at position C-7. In combination with a previously described MK methyltransferase (MqnK/MenK) dedicated to MK methylation at C-8, 7,8-DMMK was produced in W. succinogenes. The position of the two methyl groups was confirmed by two-dimensional NMR and midpoint redox potentials of 7-MMK, 8-MMK and 7,8-DMMK were determined by cyclic voltammetry. A phylogenetic tree of MenK, MenK2 and HemN proteins revealed a Coriobacteriia-specific MenK2 clade. Using chimeric A. equolifaciens MenK/MenK2 proteins produced in E. coli it was shown that the combined linker and HemN domains determined the site-specificity of methylation. The results suggest that the use of MenK2 as a biomarker allows predicting the ability of DMMK synthesis in microbial species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.