Batch reinforcement learning is a subfield of dynamic programming-based reinforcement learning. Originally defined as the task of learning the best possible policy from a fixed set of a priori-known transition samples, the (batch) algorithms developed in this field can be easily adapted to the classical online case, where the agent interacts with the environment while learning. Due to the efficient use of collected data and the stability of the learning process, this research area has attracted a lot of attention recently. In this chapter, we introduce the basic principles and the theory behind batch reinforcement learning, describe the most important algorithms, exemplarily discuss ongoing research within this field, and briefly survey real-world applications of batch reinforcement learning.
Abstract-This paper discusses the effectiveness of deep autoencoder neural networks in visual reinforcement learning (RL) tasks. We propose a framework for combining deep autoencoder neural networks (for learning compact feature spaces) with recently-proposed batch-mode RL algorithms (for learning policies). An emphasis is put on the data-efficiency of this combination and on studying the properties of the feature spaces automatically constructed by the deep auto-encoders. These feature spaces are empirically shown to adequately resemble existing similarities between observations and allow to learn useful policies. We propose several methods for improving the topology of the feature spaces making use of task-dependent information in order to further facilitate the policy-learning. Finally, we present first results on successfully learning good control policies using synthesized and real images.
Batch reinforcement learning methods provide a powerful framework for learning efficiently and effectively in autonomous robots. The paper reviews some recent work of the authors aiming at the successful application of reinforcement learning in a challenging and complex domain. It discusses several variants of the general batch learning framework, particularly tailored to the use of multilayer perceptrons to approximate value functions over continuous state spaces. The batch learning framework is successfully used to learn crucial skills in our soccer-playing robots participating in the RoboCup competitions. This is demonstrated on three different case studies.
We propose a learning architecture, that is able to do reinforcement learning based on raw visual input data. In contrast to previous approaches, not only the control policy is learned. In order to be successful, the system must also autonomously learn, how to extract relevant information out of a high-dimensional stream of input information, for which the semantics are not provided to the learning system. We give a first proof-of-concept of this novel learning architecture on a challenging benchmark, namely visual control of a racing slot car. The resulting policy, learned only by success or failure, is hardly beaten by an experienced human player. D. The FQI Controller -approximating the Q-function with ClusterRLAn important decision is what approximator to use for approximating the value function inside the FQI -algorithm � The difference II K(Zt) -K(Zt-l) II approximates the derivative i/ of the mapped states 8' and could be interpreted as a 'feature-space velocity'.
The paper develops a new approach for robot selflocalization in the Robocup Midsize league. The approach is based on modeling the quality of an estimate using an error term and numerically minimizing it. Furthermore, we derive the reliability of the estimate analyzing the error function and apply the derived uncertainty value to a sensor integration process. The approach is characterized by high precision, robustness and computational efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.