Intact SLN were not incorporated into the cells, i.e., C-6 was passively redistributed from SLN to lipophilic cellular compartments. C-6 was enriched up to a given limit in HCE-T cells within 5 min of contact with the dispersions both under static and under flow conditions. The C-6 delivery rate from liposomes was superior to that from SLN whereby the suspension exhibited the lowest rate. C-6 release rates were comparable for static and flow conditions. Alternate flushing with formulations and buffer revealed that cells accumulated C-6. The results suggest that combining microfluidics with live cell imaging provides a valuable option for in vitro studies of ocular drug delivery.
Artemisinins, the mainstay in the treatment of malaria today, are used in combination with other antimalarials to forestall resistance, as artemisinin-combination therapies. In line with the World Health Organization’s recommendation in that respect, solid lipid nanoparticles (SLN) were formulated to encapsulate two antimalarial drugs — artemether and lumefantrine. The nanoparticles were evaluated for size and solid state properties. Caco-2 cells were used to investigate the ability of the SLN to deliver its payload at the absorptive interface of the gastrointestinal tract. Mice heart endothelial cells (MHEC) were also used as marker cells to assess cellular uptake of coumarin 6 from the SLN with imaging by confocal laser scanning microscopy (CSLM). In vivo antimalarial activity was done using a standard suppressive protocol. The results of this study revealed different crystal properties for artemether and lumefantrine, which affected their solubility in the lipid matrix and thus, loading in the lipid nanoparticles. The particles of the SLN were within the range of 150 nm–500 nm with varied polydispersity indices. Wide angle X-ray diffraction analysis indicated the presence of particles of solid nature. Cellular uptake studies indicated uptake of coumarin 6 from the coumarin 6-labeled SLN. In vivo antimalarial studies indicated high clearance of parasitemia with minimal effect on hematological parameters tested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.