Available on request from the authors.
The Knowledge Discovery from Databases (KDD) technique called 'association rules' is applied to a large data set representing applicants for government-funded legal aid. Results indicate that KDD can be an invaluable tool for legal analysts. Association rules discovered identify associations between variables that are present in the data set though are not necessarily causal. Interesting rules can prompt analysts to formulate hypotheses for further investigation. The identi cation of interesting rules is typically performed using an objective measure of 'interesting' although this measure is often not suf ciently accurate to eliminate all uninteresting rules. In this article, a subjective measure of interestingness is adopted in conjunction with the objective measures. This leads to the ability to focus more accurately on those rules that surprise the analyst and are therefore more likely to be interesting. In general, KDD techniques have not been applied to law despite possible bene ts because data is often stored in narrative form rather than in structured databases. However, the impending introduction of data warehouses that collect data from a number of organizations across a legal system presents invaluable opportunities for analysts using KDD.
The problem with detecting adverse drug reactions (ADRs) from drugs is that they may not be obvious until long after they are widely prescribed. Part of the problem is these events are rare. This work describes an approach to signal detection of ADRs based on association rules (AR) in Australian drug safety data. This work was carried out using the Australian Adverse Drug Reactions Advisory Committee (ADRAC) database, which contains a hundred and thirty seven thousand records collected in 1972-2001 period.Many signal detection methods have been developed for drug safety data, most of which use a classical statistical approach. Some of these stratify the data using an ontology for reactions, but the application of drug ontologies to ADR signal detection methods has not been reported.We propose a novel approach for detecting various signal levels by using an overlapped windowing approach. The overlapping windows help to detect smooth transition of signal. We use association rules for measuring significant change over time for different hierarchical levels of drugs (using the Anatomical-Therapeutic-Chemical (ATC) system of drug classification ontology) and their reactions based on the System Organ Classes (SOC) ontology. Using association rules and their strength for different levels in the drug and reaction hierarchy, helps in the detection of signals at particular levels in higher order using a bottom up approach.The results of a preliminary investigation of ADRAC data using our method demonstrate that this approach could produce a powerful and robust ADR signal detection method.
We demonstrate the use of a visual data-mining tool for non-technical domain experts within organizations to facilitate the extraction of meaningful information and knowledge from in-house databases. The tool is mainly based on the basic notion of grouping association rules. Association rules are useful in discovering items that are frequently found together. However in many applications, rules with lower frequencies are often interesting for the user. Grouping of association rules is one way to overcome the rare item problem. However some groups of association rules are too large for ease of understanding. In this chapter we propose a method for clustering categorical data based on the conditional probabilities of association rules for data sets with large numbers of attributes. We argue that the proposed method provides non-technical users with a better understanding of discovered patterns in the data set.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.