For research in the atmospheric boundary layer and in the vicinity of wind turbines, the turbulent 3D wind vector can be measured from fixed-wing unmanned aerial systems (UAS) with a five-hole probe and an inertial navigation system. Since non-zero vertical wind and varying horizontal wind causes variations in the airspeed of the UAS, and since it is desirable to sample with a flexible cruising airspeed to match a broad range of operational requirements, the influence of airspeed variations on mean values and turbulence statistics is investigated. Three calibrations of the five-hole probe at three different airspeeds are applied to the data of three flight experiments. Mean values and statistical moments of second order, calculated from horizontal straight level flights are compared between flights in a stably stratified polar boundary layer and flights over complex terrain in high turbulence. Mean values are robust against airspeed variations, but the turbulent kinetic energy, variances and especially covariances, and the integral length scale are strongly influenced. Furthermore, a transect through the wake of a wind turbine and a tip vortex is analyzed, showing the instantaneous influence of the intense variations of the airspeed on the measurement of the turbulent 3D wind vector. For turbulence statistics, flux calculations, and quantitative analysis of turbine wake characteristics, an independent measurement of the true airspeed with a pitot tube and the interpolation of calibration polynomials at different Reynolds numbers of the probe's tip onto the Reynolds number during the measurement, reducing the uncertainty significantly.Atmosphere 2019, 10, 124 2 of 33 attitude, position, and velocity of the vehicle, measured by an inertial navigation system (INS), multiple coordinate transformations finally yield the wind vector. This method is widely used in manned aircraft [1,10] and on fixed-wing UAS [4][5][6][7]. The accuracy of the wind vector measurement is crucial, and the propagation of errors have many influencing factors, originating in the attitude and ground speed measurement of the aircraft, the flow angles and flow magnitude (true airspeed vector) measurement with the multi-hole probe, and also in the measurement of the thermodynamic state of the air. Extensive studies for various systems and subsystems of the wind vector measurement with manned research aircraft [11][12][13][14][15][16], including in-flight calibration procedures and uncertainty analysis [10,17], and with UAS (e.g., for the M 2 AV [7]) were performed.So far, for UAS, calibration maneuvers during flight and the influence of airspeed variations on the wind vector measurement were not addressed in terms of calibration and uncertainty analysis for the 3D wind vector measurement with multi-hole probes. Since a misalignment between the multi-hole probe's orientation and the aircraft cannot be avoided, an in-flight calibration must be applied [16]. Calibration maneuvers during flight such as the "acceleration-deceleration maneuver", the "ya...
<p>F&#252;r Wind- und Turbulenzmessungen an Bord unbemannter Luftfahrzeugsysteme (unmanned aerial systems, UAS) werden bisher h&#228;ufig Mehrlochsonden (MLS) eingesetzt. In einer Fast-Response Sonde (FRS) werden im Gegensatz zu konventionellen MLS die Drucksensoren innerhalb des Sondenk&#246;rpers platziert, was zu k&#252;rzeren Druckleitungsl&#228;ngen, und somit zu schnelleren Reaktionszeiten f&#252;hrt. Mit dieser Methode wurden in Windkanalanwendungen Messfrequenzen im kHz-Bereich demonstriert. Eine Messung in der atmosph&#228;rischen Grenzschicht mit h&#246;herer Aufl&#246;sung kann die Erfassung turbulenter Fl&#252;sse oder kleinskaliger Turbulenz, wie zum Beispiel Blattspitzenwirbel von Windradfl&#252;geln, verbessern. Auch kann die Datengrundlage f&#252;r direkte numerische Simulationen geschaffen werden. <br />Zu Erprobungszwecken wurde eine FRS als zus&#228;tzliche Komponente in das Sensorsystem des UAS vom Typ MASC-3 der Universit&#228;t T&#252;bingen integriert und Validierungsmessungen durchgef&#252;hrt. Hierf&#252;r wurde eine spezielle Doppel-Sonden-Konfiguration entwickelt, die sowohl die FRS als auch die bisher in MASC-3 verwendete konventionelle MLS integriert. Es wurden umfangreiche Windkanaltests, sowie Druck-, Geschwindigkeits- und Str&#246;mungswinkelkalibrierungen durchgef&#252;hrt. Flugmessungen in der atmosph&#228;rischen Grenzschicht unter stabilen Bedingungen mit schwacher Turbulenz ergaben, dass Mittelwerte und Varianzen der dreidimensionalen Windkomponenten der FRS mit Messungen der konventionellen MLS &#252;bereinstimmen. Analysen von Energiespektren und Strukturfunktionen zeigen, dass eine genaue Messung der Turbulenz bis zu einer Frequenz von ca. 80 Hz m&#246;glich ist. &#220;ber 80 Hz wich das gemessene Spektrum von der erwarteten Kolmogorov-Verteilung ab, womit eine knapp dreifach verbesserte Messaufl&#246;sung gegen&#252;ber der mit der konventionellen Mehrlochsonde maximal m&#246;glichen Aufl&#246;sung von ca. 30 Hz erreicht werden konnte. Bei einer typischen Fluggeschwindigkeit von 18,5 m s<sup>-1</sup> entspricht dies einer r&#228;umlichen Aufl&#246;sung von ca. 20 cm.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.