Wearable devices have recently received considerable interest due to their great promise for a plethora of applications. Increased research efforts are oriented towards a non-invasive monitoring of human health as well as activity parameters. A wide range of wearable sensors are being developed for real-time non-invasive monitoring. This paper provides a comprehensive review of sensors used in wrist-wearable devices, methods used for the visualization of parameters measured as well as methods used for intelligent analysis of data obtained from wrist-wearable devices. In line with this, the main features of commercial wrist-wearable devices are presented. As a result of this review, a taxonomy of sensors, functionalities, and methods used in non-invasive wrist-wearable devices was assembled.
The basis of blockchain-related data, stored in distributed ledgers, are digitally signed transactions. Data can be stored on the blockchain ledger only after a digital signing process is performed by a user with a blockchain-based digital identity. However, this process is time-consuming and not user-friendly, which is one of the reasons blockchain technology is not fully accepted. In this paper, we propose a machine learning-based method, which introduces automated signing of blockchain transactions, while including also a personalized identification of anomalous transactions. In order to evaluate the proposed method, an experiment and analysis were performed on data from the Ethereum public main network. The analysis shows promising results and paves the road for a possible future integration of such a method in dedicated digital signing software for blockchain transactions.
In this paper we research the possibility of automated combinational logic circuit (CLC) design using evolutionary computation. We propose and develop a genetic programming method which is able to construct a CLC based on the given truth tables, where the focus is to minimize the number of logic gates while accuracy is not compromised. We tested the proposed approach and compared the results both with MGA and NGA automatic methods as well as with the results obtained by human designers. Results show that our algorithm is superior to other methods as it can find correct circuits with fewer specified elements. The experiments performed on larger examples show good performance and scalability of the proposed evolutionary approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.