The firefly algorithm has become an increasingly important tool of Swarm Intelligence that has been applied in almost all areas of optimization, as well as engineering practice. Many problems from various areas have been successfully solved using the firefly algorithm and its variants. In order to use the algorithm to solve diverse problems, the original firefly algorithm needs to be modified or hybridized. This paper carries out a comprehensive review of this living and evolving discipline of Swarm Intelligence, in order to show that the firefly algorithm could be applied to every problem arising in practice. On the other hand, it encourages new researchers and algorithm developers to use this simple and yet very efficient algorithm for problem solving. It often guarantees that the obtained results will meet the expectations
Wearable devices have recently received considerable interest due to their great promise for a plethora of applications. Increased research efforts are oriented towards a non-invasive monitoring of human health as well as activity parameters. A wide range of wearable sensors are being developed for real-time non-invasive monitoring. This paper provides a comprehensive review of sensors used in wrist-wearable devices, methods used for the visualization of parameters measured as well as methods used for intelligent analysis of data obtained from wrist-wearable devices. In line with this, the main features of commercial wrist-wearable devices are presented. As a result of this review, a taxonomy of sensors, functionalities, and methods used in non-invasive wrist-wearable devices was assembled.
The increasingly rapid creation, sharing and exchange of information nowadays put researchers and data scientists ahead of a challenging task of data analysis and extracting relevant information out of data. To be able to learn from data, the dimensionality of the data should be reduced first. Feature selection (FS) can help to reduce the amount of data, but it is a very complex and computationally demanding task, especially in the case of high-dimensional datasets. Swarm intelligence (SI) has been proved as a technique which can solve NP-hard (Non-deterministic Polynomial time) computational problems. It is gaining popularity in solving different optimization problems and has been used successfully for FS in some applications. With the lack of comprehensive surveys in this field, it was our objective to fill the gap in coverage of SI algorithms for FS. We performed a comprehensive literature review of SI algorithms and provide a detailed overview of 64 different SI algorithms for FS, organized into eight major taxonomic categories. We propose a unified SI framework and use it to explain different approaches to FS. Different methods, techniques, and their settings are explained, which have been used for various FS aspects. The datasets used most frequently for the evaluation of SI algorithms for FS are presented, as well as the most common application areas. The guidelines on how to develop SI approaches for FS are provided to support researchers and analysts in their data mining tasks and endeavors while existing issues and open questions are being discussed. In this manner, using the proposed framework and the provided explanations, one should be able to design an SI approach to be used for a specific FS problem.
Citation:Fister I Jr., Fister I and Perc M (2016) Toward In this perspective, our goal is to present and elucidate a thus far largely overlooked problem that is arising in scientific publishing, namely the identification and discovery of citation cartels in citation networks. Taking from the well-known definition of a community in the realm of network science, namely that people within a community share significantly more links with each other as they do outside of this community, we propose that citation cartels are defined as groups of authors that cite each other disproportionately more than they do other groups of authors that work on the same subject. Evidently, the identification of citation cartels is somewhat different, although similar to the identification of communities in networks. We systematically expose the problem, provide theoretical examples, and outline an algorithmic guide on how to approach the subject.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.