In this paper, we intend to formulate a new metaheuristic algorithm, called Cuckoo Search (CS), for solving optimization problems. This algorithm is based on the obligate brood parasitic behaviour of some cuckoo species in combination with the Lévy flight behaviour of some birds and fruit flies. We validate the proposed algorithm against test functions and then compare its performance with those of genetic algorithms and particle swarm optimization. Finally, we discuss the implication of the results and suggestion for further research.
Nature-inspired algorithms are among the most powerful algorithms for optimization. This paper intends to provide a detailed description of a new Firefly Algorithm (FA) for multimodal optimization applications. We will compare the proposed firefly algorithm with other metaheuristic algorithms such as particle swarm optimization (PSO). Simulations and results indicate that the proposed firefly algorithm is superior to existing metaheuristic algorithms. Finally we will discuss its applications and implications for further research.Citation detail: X.-S. Yang, "Firefly algorithms for multimodal optimization", in:
Flower pollination is an intriguing process in the natural world. Its evolutionary characteristics can be used to design new optimization algorithms. In this paper, we propose a new algorithm, namely, flower pollination algorithm, inspired by the pollination process of flowers. We first use ten test functions to validate the new algorithm, and compare its performance with genetic algorithms and particle swarm optimization. Our simulation results show the flower algorithm is more efficient than both GA and PSO. We also use the flower algorithm to solve a nonlinear design benchmark, which shows the convergence rate is almost exponential.
A new metaheuristic optimisation algorithm, called Cuckoo Search (CS), was developed recently by Yang and Deb (2009). This paper presents a more extensive comparison study using some standard test functions and newly designed stochastic test functions. We then apply the CS algorithm to solve engineering design optimisation problems, including the design of springs and welded beam structures. The optimal solutions obtained by CS are far better than the best solutions obtained by an efficient particle swarm optimiser. We will discuss the unique search features used in CS and the implications for further research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.