In this paper, we intend to formulate a new metaheuristic algorithm, called Cuckoo Search (CS), for solving optimization problems. This algorithm is based on the obligate brood parasitic behaviour of some cuckoo species in combination with the Lévy flight behaviour of some birds and fruit flies. We validate the proposed algorithm against test functions and then compare its performance with those of genetic algorithms and particle swarm optimization. Finally, we discuss the implication of the results and suggestion for further research.
A new metaheuristic optimisation algorithm, called Cuckoo Search (CS), was developed recently by Yang and Deb (2009). This paper presents a more extensive comparison study using some standard test functions and newly designed stochastic test functions. We then apply the CS algorithm to solve engineering design optimisation problems, including the design of springs and welded beam structures. The optimal solutions obtained by CS are far better than the best solutions obtained by an efficient particle swarm optimiser. We will discuss the unique search features used in CS and the implications for further research.
In nature, the eastern North American monarch population is known for its southward migration during the late summer/autumn from the northern USA and southern Canada to Mexico, covering thousands of miles. By simplifying and idealizing the migration of monarch butterflies, a new kind of nature-inspired metaheuristic algorithm, called monarch butterfly optimization (MBO), a first of its kind, is proposed in this paper. In MBO, all the monarch butterfly individuals are located in two distinct lands, viz. southern Canada and the northern USA (Land 1) and Mexico (Land 2). Accordingly, the positions of the monarch butterflies are updated in two ways. Firstly, the offsprings are generated (position updating) by migration operator, which can be adjusted by the migration ratio. It is followed by tuning the positions for other butterflies by means of butterfly adjusting operator. In order to keep the population unchanged and minimize fitness evaluations, the sum of the newly generated butterflies in these two ways remains equal to the original population. In order to demonstrate the superior performance of the MBO algorithm, a comparative study with five other metaheuristic algorithms through thirty-eight benchmark problems is carried out. The results clearly exhibit the capability of the MBO method toward finding the enhanced function values on most of the benchmark problems with respect to the other five algorithms. Note that the source codes of the proposed MBO algorithm are publicly available at GitHub (https://github.com/ggw0122/Monarch-Butterfly-Optimiza tion, C??/MATLAB) and MATLAB Central (http://www. mathworks.com/matlabcentral/fileexchange/50828-mon arch-butterfly-optimization, MATLAB).
Cuckoo search (CS) is a relatively new algorithm, developed by Yang and Deb in 2009, and CS is efficient in solving global optimization problems. In this paper, we review the fundamental ideas of cuckoo search and the latest developments as well as its applications. We analyze the algorithm and gain insight into its search mechanisms and find out why it is efficient. We also discuss the essence of algorithms and its link to self-organizing systems, and finally we propose some important topics for further research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.