4-(p-X-phenyl)thiosemicarbazone of napthaldehyde {where X = Cl (HL¹) and X = Br (HL²)}, thiosemicarbazone of quinoline-2-carbaldehyde (HL³) and 4-(p-fluorophenyl)thiosemicarbazone of salicylaldehyde (H₂L⁴) and their copper(I) {[Cu(HL¹)(PPh₃)₂Br]·CH₃CN (1) and [Cu(HL²)(PPh₃)₂Cl]·DMSO (2)} and copper(II) {[(Cu₂L³₂Cl)₂(μ-Cl)₂]·2H₂O (3) and [Cu(L⁴)(Py)] (4)} complexes are reported herein. The synthesized ligands and their copper complexes were successfully characterized by elemental analysis, cyclic voltammetry, NMR, ESI-MS, IR and UV-Vis spectroscopy. Molecular structures of all the Cu(I) and Cu(II) complexes have been determined by X-ray crystallography. All the complexes (1-4) were tested for their ability to exhibit DNA-binding and -cleavage activity. The complexes effectively interact with CT-DNA possibly by groove binding mode, with binding constants ranging from 10⁴ to 10⁵ M⁻¹. Among the complexes, 3 shows the highest chemical (60%) as well as photo-induced (80%) DNA cleavage activity against pUC19 DNA. Finally, the in vitro antiproliferative activity of all the complexes was assayed against the HeLa cell line. Some of the complexes have proved to be as active as the clinical referred drugs, and the greater potency of 3 may be correlated with its aqueous solubility and the presence of the quinonoidal group in the thiosemicarbazone ligand coordinated to the metal.
The synthesis and characterization of an oxidovanadium(iv) [VIVO(L)(acac)] (1) and of two dioxidovanadium(v) [VVO2(L')] (2) and [VVO2(L)] (2a) complexes of the Schiff base formed from the reaction of 4-(p-fluorophenyl) thiosemicarbazone with pyridine-2-aldehyde (HL) are described. The oxidovanadium(iv) species [VIVO(L)(acac)] (1) was synthesized by the reaction of VIVO(acac)2 with the thiosemicarbazone HL in refluxing ethanol. The recrystallization of [VIVO(L)(acac)] (1) in DMF, CH3CN or EtOH gave the same product i.e. the dioxidovanadium(v) complex [VVO2(L)] (2a); however, upon recrystallization of 1 in DMSO a distinct compound [VVO2(L')] (2) was formed, wherein the original ligand L- is transformed to a rearranged one, L'-. In the presence of DMSO the ligand in complex 1 is found to undergo methylation at the carbon centre attached to imine nitrogen (aldimine) and transformed to the corresponding VVO2-species through in situ reaction. The synthesized HL and the metal complexes were characterized by elemental analysis, IR, UV-Vis, NMR and EPR spectroscopy. The molecular structure of [VVO2(L')] (2) was determined by single crystal X-ray crystallography. The methylation of various other ligands and complexes prepared from different vanadium precursors under similar reaction conditions was also attempted and it was confirmed that the imine methylation observed is both ligand and metal precursor specific. Complexes 1 and 2 show in vitro insulin-like activity against insulin responsive L6 myoblast cells, higher than VIVO(acac)2, with complex 1 being more potent. In addition, the in vitro cytotoxicity studies of HL, and of complexes 1 and 2 against the MCF-7 and Vero cell lines were also done. The ligand is not cytotoxic and complex 2 is significantly more cytotoxic than 1. DAPI staining experiments indicate that an increase in the time of incubation and an increase of concentration of the complexes lead to the increase in cell death.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.