The impact of land–atmosphere anomaly coupling on land variability is investigated using a new two-stage climate model experimental design called the “GLACE-Hydrology” experiment. First, as in the GLACE-CMIP5 experiment, twin sets of coupled land–atmosphere climate model (CAM5-CLM4.5) ensembles are performed, with each simulation using the same prescribed observed sea surface temperatures and radiative forcing for the years 1971–2014. In one set, land–atmosphere anomaly coupling is removed by prescribing soil moisture to follow the control model’s seasonally evolving soil moisture climatology (“land–atmosphere uncoupled”), enabling a contrast with the original control set (“land–atmosphere coupled”). Then, the atmospheric outputs from both sets of simulations are used to force land-only ensemble simulations, allowing investigation of the resulting soil moisture variability and memory under both the coupled and uncoupled scenarios. This study finds that in midlatitudes during boreal summer, land–atmosphere anomaly coupling significantly strengthens the relationship between soil moisture and evapotranspiration anomalies, both in amplitude and phase. This allows for decreased moisture exchange between the land surface and atmosphere, increasing soil moisture memory and often its variability as well. Additionally, land–atmosphere anomaly coupling impacts runoff variability, especially in wet and transition regions, and precipitation variability, although the latter has surprisingly localized impacts on soil moisture variability. As a result of these changes, there is an increase in the signal-to-noise ratio, and thereby the potential seasonal predictability, of SST-forced hydroclimate anomalies in many areas of the globe, especially in the midlatitudes. This predictability increase is greater for soil moisture than precipitation and has important implications for the prediction of drought.
Plant response to elevated CO2 concentration is known to increase leaf‐level water‐use efficiency through a reduction in stomatal opening. Recent studies have emphasized that increased plant water‐use efficiency can ameliorate the impact of drought due to climate change. However, there is a potentially counterbalancing impact due to the increased leaf area. We investigate long‐term trends (1951 to 2015) of observed streamflow in the Southeastern United States (SE US) and quantify the contribution of major drivers of streamflow changes using single factor climate modeling experiments from Community Land Model Version 5 (CLM5). The SE US streamflow observations do not exhibit a trend, which is in agreement with the CLM5 control experiment. Using the factorial set of CLM5 experiments, we find that increased leaf area under elevated CO2 leads to decreased runoff and completely counteracts increased runoff due to water‐use efficiency gains under elevated CO2 and land‐use change.
With the recent rapid development of Augmented Reality (AR) headsets, new possi- bilities emerge for applications of AR technologies. Today, publicly available AR headsets provide novel storytelling platforms, expand the vision of doctors and engineers, remove boundaries of educational processes and assist humanity in multiple endeavors.Our research encompasses various levels of the learning process by examining design principals and developing reliable software for multiple educational applications. This paper focuses on the software development process for an AR program that teaches the medical procedure known as the Lumbar Puncture. Our team utilized the Meta 2 headset by Metavision to create a software application to enhance the student experience and extend training effectiveness. We will discuss the requirements and specification for the future application, describe the development process and issues encountered for the current version of the application, as well as present preliminary results of testing and evaluation.
The National Oceanic and Atmospheric Administration have developed a very high-resolution streamflow forecast using National Water Model (NWM) for 2.7 million stream locations in the United States. However, considerable challenges exist for quantifying uncertainty at ungauged locations and forecast reliability. A data science approach is presented to address the challenge. The long-range daily streamflow forecasts are analyzed from Dec. 2018 to Aug. 2021 for Alabama and Georgia. The forecast is evaluated at 389 observed USGS stream gauging locations using standard deterministic metrics. Next, the forecast errors are grouped using watersheds’ biophysical characteristics, including drainage area, land use, soil type, and topographic index. The NWM forecasts are more skillful for larger and forested watersheds than smaller and urban watersheds. The NWM forecast considerably overestimates the streamflow in the urban watersheds. The classification and regression tree analysis confirm the dependency of the forecast errors on the biophysical characteristics. A densely connected neural network model consisting of 6 layers (Deep Learning, DL) is developed using biophysical characteristics, NWM forecast as inputs, and the forecast errors as outputs. The DL model successfully learns location invariant transferrable knowledge from the domain trained in the gauged locations and applies the learned model to estimate forecast errors at the ungauged locations. A temporal and spatial split of the gauged data shows that the probability of capturing the observations in the forecast range improved significantly in the hybrid NWM-DL model (82±3 %) than in the NWM-only forecast (21±1 %). A tradeoff between overly constrained NWM forecast and increased forecast uncertainty range in the DL model is noted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.