TLRs recognize pathogen-expressed Ags and elicit host-protective immune response. Although TLR2 forms heterodimers with TLR1 or TLR6, recognizing different ligands, differences in the functions of these heterodimers remain unknown. In this study, we report that in Leishmania major-infected macrophages, the expression of TLR1 and TLR2, but not TLR6, increased; TLR2–TLR2 association increased, but TLR2–TLR6 association diminished. Lentivirus-expressed TLR1–short hairpin RNA (shRNA) or TLR2–shRNA administration reduced, but TLR6–shRNA increased L. major infection in BALB/c mice. Corroboratively, Pam3CSK4 (TLR1–TLR2 ligand) and peptidoglycan (TLR2 ligand) increased L. major infection but reduced TLR9 expression, whereas pegylated bisacycloxypropylcysteine (BPPcysMPEG; TLR2–TLR6 ligand) reduced L. major number in L. major-infected macrophages, accompanied by increased TLR9 expression, higher IL-12 production, and inducible NO synthase expression. Whereas MyD88, Toll/IL-1R adaptor protein, and TNFR-α–associated factor 6 recruitments to TLR2 were not different in Pam3CSK4-, peptidoglycan-, or BPPcysMPEG-treated macrophages, only BPPcysMPEG enhanced p38MAPK and activating transcription factor 2 activation. BPPcysMPEG conferred antileishmanial functions to L. major-infected BALB/c-derived T cells in a macrophage–T cell coculture and in BALB/c mice; the protection was TLR6 dependent and IL-12 dependent, and it was accompanied by reduced regulatory T cell number. BPPcysMPEG administration during the priming with fixed L. major protected BALB/c mice against challenge L. major infection; the protection was accompanied by low IL-4 and IL-10, but high IFN-γ productions and reduced regulatory T cells. Thus, BPPcysMPEG, a novel diacylated lipopeptide ligand for TLR2–TLR6 heterodimer, induces IL-12–dependent, inducible NO synthase–dependent, T-reg–sensitive antileishmanial protection. The data reveal a novel dimerization partner-dependent duality in TLR2 function.
SummaryToll-like receptors (TLRs) recognize pathogen-associated molecular patterns and results in innate immune system activation that results in elicitation of the adaptive immune response. One crucial modulator of the adaptive immune response is CD40. However, whether these molecules influence each other's expression and functions is not known. Therefore, we examined the effects of TLRs on CD40 expression on macrophages, the host cell for the protozoan parasite Leishmania major. While polyinosinic-polycytidylic acid [poly (I:C)], a TLR-3 ligand, lipopolysaccharide (LPS), a TLR-4 ligand, imiquimod, a TLR-7/8 ligand and cytosine-phosphate-guanosine (CpG), a TLR-9 ligand, were shown to enhance CD40 expression, CD40 stimulation enhanced only TLR-9 expression. Therefore, we tested the synergism between CD40 and CpG in anti-leishmanial immune response. In Leishmaniainfected macrophages, CpG was found to reduce CD40-induced extracellular stress-regulated kinase (ERK)1/2 activation; with the exception of interleukin (IL)-10, these ligands had differential effects on CD40-induced IL-1α, IL-6 and IL-12 production. CpG significantly enhanced the anti-leishmanial function of CD40 with differential effects on IL-4, IL-10 and interferon (IFN)-γ production in susceptible BALB/c mice. Thus, we report the first systematic study on CD40-TLR cross-talk that regulated the experimental L. major infection.
As its central immunomodulatory effects, CD40 induces interleukin (IL)-12-dependent antitumor immune responses; as its local protumor effects, CD40 induces the expression of vascular endothelial growth factor (VEGF) that promotes tumor angiogenesis and growth. Therefore, using a previously established tumor model in mouse, we examined if the antitumor functions of CD40 are self-limited by VEGF induction. We observed that as the tumor mass grew during day 6 to day 18, VEGF expression in the tumor peaked with concomitant decrease in expressions of CD40 and IL-12 but not of IL-10. Among the angiogenic factors, VEGF-B, VEGFR-1, VEGFR-2, angiopoietin-1 and Tie2 expressions decreased, whereas the expressions of angiopoietin-2 and angiopoietin-3 increased with tumor growth. As significant changes in the expressions of these factors were observed on day 6, we treated the tumor-bearing mice with the agonistic anti-CD40 antibody or neutralizing anti-VEGF antibody-alone or in combination-from the fifth day after the injection of tumor cells. The anti-VEGF antibody significantly enhanced the antitumor effects of the anti-CD40 antibody, as observed through increased survival of the mice, accompanied by reduced angiogenesis and angiopoietin-2 expression but higher T-cell proliferation in response to tumor antigens, increased interferon-c production and tumor cell cytotoxicity and higher levels of tumor antigen-specific serum IgM, IgG1 and IgG2a, indicating B-cell activation. Thus, our data show for the first time that the combined treatment with an agonistic anti-CD40 antibody and a neutralizing anti-VEGF antibody, which increases antitumor immune response or reduces local angiogenesis, respectively, is a novel antitumor strategy.
BackgroundDevelopment of Salmonella enterica serovar Typhimurium (S. Typhimurium) live attenuated vaccine carrier strain to prevent enteric infections has been a subject of intensive study. Several mutants of S. Typhimurium have been proposed as an effective live attenuated vaccine strain. Unfortunately, many such mutant strains failed to successfully complete the clinical trials as they were suboptimal in delivering effective safety and immunogenicity. However, it remained unclear, whether the existing live attenuated S. Typhimurium strains can further be attenuated with improved safety and immune efficacy or not.ResultsWe deleted a specific non-SPI (Salmonella Pathogenicity Island) encoded virulence factor mig-14 (an antimicrobial peptide resistant protein) in ssaV deficient S. Typhimurium strain. The ssaV is an important SPI-II gene involved in Salmonella replication in macrophages and its mutant strain is considered as a potential live attenuated strain. However, fatal systemic infection was previously reported in immunocompromised mice like Nos2−/− and Il-10−/− when infected with ssaV deficient S. Typhimurium. Here we reported that attenuation of S. Typhimurium ssaV mutant in immunocompromised mice can further be improved by introducing additional deletion of gene mig-14. The ssaV, mig-14 double mutant was as efficient as ssaV mutant, with respect to host colonization and eliciting Salmonella-specific mucosal sIgA and serum IgG response in wild-type C57BL/6 mice. Interestingly, this double mutant did not show any systemic infection in immunocompromised mice.ConclusionsThis study suggests that ssaV, mig-14 double mutant strain can be effectively used as a potential vaccine candidate even in immunocompromised mice. Such attenuated vaccine strain could possibly used for expression of heterologous antigens and thus for development of a polyvalent vaccine strain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.