Internet of Things (IoT) systems tend to generate with energy and good data to process and responding. In internet of things devices, the most important challenge when sending data to the cloud the level of energy consumption. This paper introduces an energy-efficient abstraction method data collection in medical with IoT-based for the exchange. Initially, the data required for IoT devices is collected from the person. First, Adaptive Optimized Sensor-Lamella Zive Welch (AOSLZW) is a pressure sensing prior to the data transmission technique used in the process. A cloud server is used data reducing the amount of data sent from IoT devices to the AOSLZW strategy. Finally, a deep neural network (DNN) based on Particle Swarm Optimization (PSO) known as DNN-PSO algorithm is used for data sensed result model make decisions based as a predictive to make it. The results are studied under distinct scenarios of the presented of the performance for AOSLZW-DNN-PSO method, for that simation are studied under different sections. This current pattern of simalation results indicates that the AOSLZW-DNN-PSO method is effective under several aspects.
An intelligent segmentation and identification of edemas diseases constitutes a most important crucial ophthalmological issues since they provide important information for the diagnosis process in accordance to the disease severity. But diagnosing the different edema diseases using the OCT-images are considered to be daunting challenge among the researchers. The implementation of computational intelligence techniques such as machine learning, deep learning, bio inspired algorithms and image processing techniques may help the doctors for some extent in improving the automatic extraction and diagnosis process consequently improving patients’ life quality. But, these are liable to more errors and less performance, which requires further improvisation in designing the intelligent systems for an effective classification of edema diseases. In this context, this paper proposes the hybrid intelligent framework for the identification, segmentation and classification of three types of edemas such as using the retinal optical coherence tomography (OCT) Images. In this process, Single Feed Forward Training networks (SLFTN) are integrated with Convolutional Layers whose hyperparameters are tuned by using Lion Optimization algorithm. An intensive experimentation is carried out using the Kaggle Retinal OCT Image datasets-2020 with Tensor flow and the proposed framework is trained with the different set of 84,494 images in which performance metrics such as accuracy, sensitivity, specificity, recall and f1score are calculated. Results shows the proposed system has provided satisfactory performance, reaching the average highest accuracy of 99.9% in identifying and classifying the respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.