Structural modification of organic molecule has considerable biological relevance. Further, coordination of a biomolecules to the metal ions significantly alters the effectiveness of the biomolecules. In view of the antimicrobial activity ligand [bis-(2-aminobenzaldehyde)] malonoyl dihydrazone], metal complexes with Cu(II), Ni(II), Zn(II) and oxovanadium(IV) have been synthesized and found to be potential antimicrobial agents. An attempt is also made to correlate the biological activities with geometry of the complexes. The complexes have been characterized by elemental analysis, molar conductance, spectra and cyclicvoltammetric measurements. The structural assessment of the complexes has been carried out based on electronic, infrared and molar conductivity values.
Fetal Electrocardiogram (ECG) signal extraction from non-invasive abdominal ECG signal is one of the important clinical practices followed to observe the fetal health state. Information about heart growth and health conditions of a fetus can be observed from fetal ECG signals. However, acquiring fetal ECG from abdominal ECG signals is still considered as a challenging task in biomedical analysis. This is mainly due to corrupted high amplitude maternal ECG signals, low signal to noise ratio of fetal ECG signal, difficulties in reduction of QRS (Q wave, R wave, S wave) complexities, fetal ECG signal superimposed characteristics, other motion, and electromyography artifacts. To reduce these conventional challenges, in fetal ECG analysis of a novel Conditional Generative adversarial network (CGAN) is introduced in this research work to extract the fetal ECG signal. The proposed classification model was classified efficiently in fetal ECG signals from non-invasive abdominal ECG signals. The experimental analysis demonstrates that the proposed network model provides better results in terms of sensitivity, specificity, and accuracy compared to the conventional fetal ECG extraction models like singular value decomposition, periodic component analysis, and Adaptive neuro-fuzzy inference system.
Internet of Things (IoT) systems tend to generate with energy and good data to process and responding. In internet of things devices, the most important challenge when sending data to the cloud the level of energy consumption. This paper introduces an energy-efficient abstraction method data collection in medical with IoT-based for the exchange. Initially, the data required for IoT devices is collected from the person. First, Adaptive Optimized Sensor-Lamella Zive Welch (AOSLZW) is a pressure sensing prior to the data transmission technique used in the process. A cloud server is used data reducing the amount of data sent from IoT devices to the AOSLZW strategy. Finally, a deep neural network (DNN) based on Particle Swarm Optimization (PSO) known as DNN-PSO algorithm is used for data sensed result model make decisions based as a predictive to make it. The results are studied under distinct scenarios of the presented of the performance for AOSLZW-DNN-PSO method, for that simation are studied under different sections. This current pattern of simalation results indicates that the AOSLZW-DNN-PSO method is effective under several aspects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.