Purpose
The study aims to investigate the influence of fabric hybridization, stacking sequences and matrix materials on the tensile strength and damping behavior of jute/carbon reinforced hybrid composites.
Design/methodology/approach
The hybrid composites were fabricated with different sequences of fabric plies in epoxy and polyester matrix using a hand layup technique. The tensile and vibration characteristics were evaluated on the hybrid laminated composite models using finite element analysis (FEA), and the results were validated experimentally according to ASTM standards. The surface morphology of the fractured specimens was studied using the scanning electron microscope.
Findings
The experimental results revealed that the position of jute layers in the hybrid composites has a significant influence on the tensile strength and damping behavior. The hybrid composite with jute fiber at the surface sides and carbon fibers at the middle exhibited higher tensile strength with superior damping properties. Further, it is found that the experimental results are in good coherence with the FEA results.
Originality/value
The less weight and low-cost hybrid composites were fabricated by incorporating the jute and carbon fabrics in interply configurations. The influences of fabric hybridization, stacking arrangements and matrix materials on the tensile and vibration behavior of jute/carbon hybrid composites have been numerically evaluated and the results were experimentally validated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.