Alterations in gastrointestinal mucin induced by dietary fiber may affect nutrient bioavailability, cytoprotection of the mucosa or other aspects of gastrointestinal function. To allow quantitative study of gastrointestinal mucin, a polyclonal antibody to the mucin of the rat small intestine was produced by injecting rabbits with a high-molecular-weight subfraction (MW 2 x 10(6)) of purified mucin glycoprotein derived from rat intestinal mucin. An enzyme-linked immunosorbent assay was developed and used for the mucin assay. Three groups of male Wistar rats consumed 5% guar gum, 5% citrus fiber or a fiber-free control diet ad libitum for 4 wk. After an overnight fast, luminal and tissue mucin antibody reactivities were determined in the rat stomach, colon and small intestine. In all groups, total (luminal and tissue) mucin reactivity was greater in the small intestine than in the colon or stomach. The group fed 5% citrus fiber had significantly greater mucin reactivity in luminal samples from stomach and intestine than did the fiber-free control group. Fiber-induced increments in gastrointestinal mucin production or availability may be responsible for several reported consequences of fiber feeding, such as more rapid transit times and delayed or impaired nutrient absorption.
On July 11, 2003, the U.S. Food and Drug Administration published a final rule amending its food-labeling regulations to require that trans FA be declared in the nutrition label of conventional foods and dietary supplements. The effective date of this final rule is January 1, 2006. This places some urgency on increasing the number and types of currently available foods for which there are trans-fat data. Compositional databases on trans fat content of food are currently limited. The purpose of this study was to determine the trans-fat content of a wide range of foods prior to the effective date of the new regulation. AOAC Official Method of Analysis 996.01 was modified for the analysis of trans fat in noncereal products. Food products for analysis were selected on the basis of market share and data from the USDA's 1994-1996 Continuing Survey of Food Intake by Individuals. Foods were purchased from local supermarkets, weighed, hydrolyzed, converted to FAME, and analyzed by GC. The results showed that trans fat (g/100 g fat) ranged from 0.0 to 48.8 in bread, cake, and related products; from 14.9 to 27.7 in margarines; from 7.7 to 35.3 in cookies and crackers; from 24.7 to 38.2 in frozen potatoes; from 0.0 to 17.1 in salty snacks; from 0.0 to 13.2 in vegetable oils and shortenings; from 0.0 to 2.2 in salad dressings and mayonnaises; and from 0.0 to 2.0 in dry breakfast cereals. Serving sizes for the foods included in this survey ranged from 12 to 161 g, and trans-fat levels ranged from 0.0 to 7.2 g/serving. The significant differences in trans-fat content in products within each food category are due to differences in the type of fats and oils used in the manufacturing processes.
Despite Euphorbia hirta L. ethnomedicinal benefits, very few studies have described the potential toxicity. The aim of the present study was to evaluate the in vivo toxicity of methanolic extracts of E. hirta. The acute and subchronic oral toxicity of E. hirta was evaluated in Sprague Dawley rats. The extract at a single dose of 5000 mg/kg did not produce treatment related signs of toxicity or mortality in any of the animals tested during the 14-day observation period. Therefore, the LD 50 of this plant was estimated to be more than 5000 mg/kg. In the repeated dose 90-day oral toxicity study, the administration of 50 mg/kg, 250 mg/kg, and 1000 mg/kg/day of E. hirta extract per body weight revealed no significant difference (P > 0.05) in food and water consumptions, body weight change, haematological and biochemical parameters, relative organ weights, and gross findings compared to the control group. Macropathology and histopathology examinations of all organs including the liver did not reveal morphological alteration. Analyses of these results with the information of signs, behaviour, and health monitoring could lead to the conclusion that the long-term oral administration of E. hirta extract for 90 days does not cause sub-chronic toxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.