Hydrogen - the renewable, green, clean, and energy source for long-term has been exciting the interest of many researchers because hydrogen is produced alongside oxygen by splitting water using a...
Copper oxide (Cu2O) is a potential material as a catalyst for CO2 reduction. Cu2O nanostructures have many advantages, including interfacial charge separation and transportation, enhanced surface area, quantum efficiency, and feasibility of modification via composite development or integration of the favorable surface functional groups. We cover the current advancements in the synthesis of Cu2O nanomaterials in various morphological dimensions and their photochemical and electrochemical applications, which complies with the physical enrichment of their enhanced activity in every application they are employed in. The scope of fresh designs, namely composites or the hierarchy of copper oxide nanostructures, and various ways to improve CO2 reduction performance are also discussed in this review. Photochemical and electrochemical CO2 transformations have received tremendous attention in the last few years, thanks to the growing interest in renewable sources of energy and green facile chemistry. The current review provides an idea of current photochemical and electrochemical carbon dioxide fixing techniques by using Cu2O-based materials. Carboxylation and carboxylative cyclization, yield valuable chemicals such as carboxylic acids and heterocyclic compounds. Radical ions, which are induced by photo- and electrochemical reactions, as well as other high-energy organic molecules, are regarded as essential mid-products in photochemical and electrochemical reactions with CO2. It has also been claimed that CO2 can be activated to form radical anions.
Photocatalysis is a remarkable methodology that is popular and applied in different interdisciplinary research areas such as the degradation of hazardous organic contaminants in wastewater. In recent years, clay-based photocatalyst composites have attracted significant attention in the field of photocatalysis owing to their abundance, excellent light response ability, and stability. This review describes the combination of clay with focusing photocatalysts such as TiO2, g-C3N4, and Bi-based compounds for degrading organic pollutants in wastewater. Clay-based composites have more active surface sites, resulting in inhibited photocatalyst particle agglomeration. Moreover, clay enhances the creation of active radicals for organic pollutant degradation by separating photogenerated electrons and holes. Thus, the functions of clay in clay-based photocatalysts are not only to act as a template to inhibit the agglomeration of the main photocatalysts but also to suppress charge recombination, which may lengthen the electron–hole pair’s lifespan and boost degrading activity. Moreover, several types of clay-based photocatalysts, such as the clay type and main photocatalyst, were compared to understand the function of clay and the interaction of clay with the main photocatalyst. Thus, this study summarizes the recent clay-based photocatalysts for wastewater remediation and concludes that clay-based photocatalysts have considerable potential for low-cost, solar-powered environmental treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.