The mitigation potential of avenue tree species needs a sound understanding, especially for landscape planning or planting tree species on roadside, especially in city limits where there is huge traffic due to more number of vehicles. A preliminary study was conducted to investigate the impact of heavy traffic movement and pollution thereof on physiological functioning of Lagerstroemia speciosa trees planted on roadside in terms of carbon absorption, mitigation potential and adaptive behavior. Trees on roadside exhibited reduced carbon assimilation (36.7 ± 2.4%) and transpiration rate (42.14 ± 2.9%), decreased stomatal conductance (66.85 ± 3.87%), increased stomatal resistance (212.2 ± 11.25%), more leaf thickness (40.54 ± 3.25) and water use efficiency (9.4 ± 0.87%), and changes in lead (179.31 ± 10.24%) and proline (15.61 ± 1.92%) concentration in leaf tissues when compared to less traffic area (FRI campus). The impacts were also witnessed in the form of enhanced vapour pressure deficit of air (63.18 ± 4.94%) and leaf (45.72 ± 3.25%), and air temperature (3.2 ± 0.16%) and leaf temperature (9.0 ± 0.82%) along roadside trees. It was inferred that heavy traffic movements interrupt the physiological functioning of trees due to alteration in the surrounding environment as compared to non-traffic areas. The present study provides baseline information to further explore and identify the potential avenue tree species having significant mitigation potential and adaptive efficiency to heavy traffic movements for improving urban environment.
Seasonal variations affect the rate of biomass accumulation in plants which is internally governed by biochemical metabolites. Studying the impact of atmospheric seasonal changes on biochemical parameters can improve our understanding of various plant species' physiological plasticity. Bamboos are a fast-growing group of woody grass species, widely distributed across tropical and sub-tropical regions of the world, and are an important species of the Indian subcontinent. Nevertheless, limited information is available on the seasonal response of biochemical's in bamboo species growing in ambient atmospheric circumstances. Therefore, we investigated the seasonal biochemical responses of
Dendrocalamus strictus
clones
viz.
Pantnagar (PNT) and Dhampur (DHM) to seasonal ambient atmospheric conditions. The concentrations of chlorophyll, protein, carbon, nitrogen, phosphorus, potassium, and magnesium in bamboo leaves were increased significantly (p < 0.025) in monsoon compared to summer and winter seasons. Carotenoid, total sugar and ascorbic acid contents were highest during winters and reduced significantly during monsoon. Proline content was highest in summer and reduced by 97% during monsoon, indicating effective adaptation to both clones' water-limited conditions. It was inferred that seasonal variation in atmospheric conditions significantly influenced the biochemical constituents of plants. This study provides a biochemical approach for screening potential bamboo species with adaptive nature for plantation purposes intended to mitigate climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.