Background3-Hydroxypropionic acid (3-HP) is an important platform chemical that boasts a variety of industrial applications. Gene expression systems inducible by 3-HP, if available, are of great utility for optimization of the pathways of 3-HP production and excretion.ResultsHere we report the presence of unique inducible gene expression systems in Pseudomonas denitrificans and other microorganisms. In P. denitrificans, transcription of three genes (hpdH, mmsA and hbdH-4) involved in 3-HP degradation was upregulated by 3-HP by the action of a transcriptional regulator protein, LysR, and a cis-acting regulatory site for LysR binding. Similar inducible systems having an LysR transcriptional regulator were identified in other microorganisms that also could degrade 3-HP. A docking study showed that the 3-HP binding pocket is located between the N-terminal helix-turn-helix motif and the C-terminal cofactor-binding domain.ConclusionsThis LysR-regulated 3-HP-inducible system should prove useful for control of the level of gene expression in response to 3-HP.Electronic supplementary materialThe online version of this article (doi:10.1186/s13068-015-0353-5) contains supplementary material, which is available to authorized users.
Coenzyme B12 (Vitamin B12 ) is one of the most complex biomolecules and an essential cofactor required for the catalytic activity of many enzymes. Pseudomonas denitrificans synthesizes coenzyme B12 in an oxygen-dependent manner using a pathway encoded by more than 25 genes that are located in six different operons. Escherichia coli, a robust and suitable host for metabolic engineering was used to produce coenzyme B12 . These genes were cloned into three compatible plasmids and expressed heterologously in E. coli BL21 (DE3). Real-time PCR, SDS-PAGE analysis and bioassay showed that the recombinant E. coli expressed the coenzyme B12 synthetic genes and successfully produced coenzyme B12 . However, according to the quantitative determination by inductively coupled plasma-mass spectrometry, the amount of coenzyme B12 produced by the recombinant E. coli (0.21 ± 0.02 μg/g cdw) was approximately 13-fold lower than that by P. denitrificans (2.75 ± 0.22 μg/g cdw). Optimization of the culture conditions to improve the production of coenzyme B12 by the recombinant E. coli was successful, and the highest titer (0.65 ± 0.03 μg/g cdw) of coenzyme B12 was obtained. Interestingly, although the synthesis of coenzyme B12 in P. denitrificans is strictly oxygen-dependent, the recombinant E. coli could produce coenzyme B12 under anaerobic conditions.
3-Hydroxypropionic acid (3-HP) is an important platform chemical that can be used to synthesize a range of chemical compounds. A previous study demonstrated that recombinant Escherichia coli stains can produce 3-HP from glycerol in the presence of vitamin B₁₂ (coenzyme B₁₂), when overexpressed with a coenzyme B₁₂-dependent glycerol dehydratase (DhaB) and an aldehyde dehydrogenase. The present study examined the production of 3-HP in recombinant Klebsiella pneumoniae strains, which naturally synthesizes vitamin B₁₂ and does not require supplementation of the expensive vitamin. The NAD⁺-dependent gamma-glutamyl-gamma-aminobutyraldehyde dehydrogenase (PuuC) of K. pneumoniae alone or with its DhaB was overexpressed homologously, and two major oxidoreductases, DhaT and YqhD, were disrupted. Without vitamin B₁₂ addition, the recombinant K. pneumoniae ΔdhaTΔyqhD overexpressing PuuC could produce ∼3.8 g/L 3-HP in 12 h of flask culture. However, this was possible only under the appropriate aeration conditions; 1,3-propanediol (1,3-PDO) (instead of 3-HP) was mainly produced when aeration was insufficient, whereas a very small amount of both 3-HP and 1,3-PDO were produced when aeration was too high. The production of a small amount of 3-HP under improper aeration conditions was attributed to either slow NAD⁺ regeneration (under low aeration) or reduced vitamin B₁₂ synthesis (under high aeration). In a glycerol fed-batch bioreactor experiment under a constant DO of 5%, the strain, K. pneumoniae ΔdhaTΔyqhD, overexpressing both PuuC and DhaB could produce >28 g/L 3-HP in 48 h with a yield of >40% on glycerol. Only small amount of 3-HP was produced when cultivation was carried out at a constant aeration of 1 vvm or constant 10% DO. These results show that K. pneumoniae is potentially useful for the production of 3-HP in an economical culture medium that does not require vitamin B₁₂. The results also suggest that the aeration conditions should be optimized carefully for the efficient production of 3-HP while using this strain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.