Analyses of streamflow, snow mass temperature, and precipitation in snowmelt-dominated river basins in the western United States indicate an advance in the timing of peak spring season flows over the past 50 years. Warm temperature spells in spring have occurred much earlier in recent years, which explains in part the trend in the timing of the spring peak flow. In addition, a decrease in snow water equivalent and a general increase in winter precipitation are evident for many stations in the western United States. It appears that in recent decades more of the precipitation is coming as rain rather than snow. The trends are strongest at lower elevations and in the Pacific Northwest region, where winter temperatures are closer to the melting point; it appears that in this region in particular, modest shifts in temperature are capable of forcing large shifts in basin hydrologic response. It is speculated that these trends could be potentially a manifestation of the general global warming trend in recent decades and also due to enhanced ENSO activity. The observed trends in hydroclimatology over the western United States can have significant impacts on water resources planning and management.
extends hydrologie ensemble services from 6-hour to year-ahead forecasts and includes additional weather and climate infoi'mation as well as improved quantification of major uncertainties.
[1] We propose a multimodel ensemble forecast framework for streamflow forecasts at multiple locations that incorporates large-scale climate information. It has four broad steps: (1) Principal component analysis is performed on the spatial streamflows to identify the dominant modes of variability. (2) Potential predictors of the dominant streamflow modes are identified from several large-scale climate features and snow water equivalent information. (3) Objective criterion is used to select a suite of candidate nonlinear regression models each with different predictors. (4) Ensemble forecasts of the dominant streamflow modes are generated from the candidate models and are combined objectively to produce a multimodel ensemble, which are then back transformed to produce spatially coherent streamflow forecasts at all the locations. The utility of the framework is demonstrated in the skillful forecast of spring seasonal streamflows at six locations in the Gunnison River Basin at several lead times. The generated ensemble streamflow forecast provides valuable and useful information for optimal management and planning of water resources in the basin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.