Globally, chickpea production is severely affected by salinity stress. Understanding the genetic basis for salinity tolerance is important to develop salinity tolerant chickpeas. A recombinant inbred line (RIL) population developed using parental lines ICCV 10 (salt-tolerant) and DCP 92-3 (salt-sensitive) was screened under field conditions to collect information on agronomy, yield components, and stress tolerance indices. Genotyping data generated using Axiom®CicerSNP array was used to construct a linkage map comprising 1856 SNP markers spanning a distance of 1106.3 cM across eight chickpea chromosomes. Extensive analysis of the phenotyping and genotyping data identified 28 quantitative trait loci (QTLs) explaining up to 28.40% of the phenotypic variance in the population. We identified QTL clusters on CaLG03 and CaLG06, each harboring major QTLs for yield and yield component traits under salinity stress. The main-effect QTLs identified in these two clusters were associated with key genes such as calcium-dependent protein kinases, histidine kinases, cation proton antiporter, and WRKY and MYB transcription factors, which are known to impart salinity stress tolerance in crop plants. Molecular markers/genes associated with these major QTLs, after validation, will be useful to undertake marker-assisted breeding for developing better varieties with salinity tolerance.
This study reports the development of a garden pea genotype ‘VRPM–901–5’ producing five flowers per peduncle at multiple flowering nodes, by using single plant selection approach from a cross ‘VL-8 × PC-531’. In addition, five other stable genetic stocks, namely VRPM-501, VRPM–502, VRPM–503, VRPM–901–3 and VRPSeL–1 producing three flowers per peduncle at multiple flowering nodes were also developed. All these unique genotypes were of either mid- or late- maturity groups. Furthermore, these multi-flowering genotypes were identified during later generations (F4 onward), which might be because of fixation of certain QTLs or recessive gene combinations. Surprisingly, a common parent PC–531, imparting multi-flowering trait in ten cross combinations was identified. Thus, the genotype PC–531 seems to harbor some recessive gene(s) or QTLs that in certain combination(s) express the multi-flowering trait. The interaction between genotype and environment showed that temperature (11–20°C) plays a key role in expression of the multi-flowering trait besides genetic background. Furthermore, the possible relationship between various multi-flowering regulatory genes such as FN, FNA, NEPTUNE, SN, DNE, HR and environmental factors was also explored, and a comprehensive model explaining the multi-flowering trait in garden pea is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.