Biomarker research in oral squamous cell carcinoma (OSCC) aims for screening/early diagnosis and in predicting its recurrence, metastasis and overall prognosis. This article reviews the current molecular perspectives and diagnosis of oral cancer with proteomics using matrix-assisted laser desorption ionization (MALDI) and surface-enhanced laser desorption ionization (SELDI) mass spectrometry (MS). This method shows higher sensitivity, accuracy, reproducibility and ability to handle complex tissues and biological fluid samples. However, the data interpretation tools of contemporary mass spectrometry still warrant further improvement. Based on the data available with laser-based mass spectrometry, biomarkers of OSCC are classified as (i) diagnosis and prognosis, (ii) secretory, (iii) recurrence and metastasis, and (iv) drug targets. Majority of these biomarkers are involved in cell homeostasis and are either physiologic responders or enzymes. Therefore, proteins directly related to tumorigenesis have more diagnostic value. Salivary secretory markers are another group that offers a favourable and easy strategy for non-invasive screening and early diagnosis in oral cancer. Key molecular interrelated pathways in oral carcinogenesis are also intensely researched with software analysis to facilitate targeted drug therapeutics. The review suggested the need for incorporating 'multiple MS or tandem approaches' and focusing on a 'group of biomarkers' instead of single protein entities, for making early diagnosis and treatment for oral cancer a reality.
Adult orthodontics is recently gaining popularity due to its importance in esthetics, oral and general health. However, none of the currently available alumina or zirconia based ceramic orthodontic brackets meet the esthetic demands of adult patients. Inherent hexagonal lattice structure and associated birefringence limits the visible light transmission in polycrystalline alumina and make them appear white and non transparent. Hence focus of the present study was to assess the feasibility of using magnesium aluminate (MgAl2O4) spinel; a member of the transparent ceramic family for esthetic orthodontic brackets. Transparent spinel specimens were developed from commercially available white spinel powder through colloidal shaping followed by pressureless sintering and hot isostatic pressing at optimum conditions of temperature and pressure. Samples were characterized for chemical composition, phases, density, hardness, flexural strength, fracture toughness and optical transmission. Biocompatibility was evaluated with in-vitro cell line experiments for cytotoxicity, apoptosis and genotoxicity. Results showed that transparent spinel samples had requisite physico-chemical, mechanical, optical and excellent biocompatibility for fabricating orthodontic brackets. Transparent spinel developed through this method demonstrated its possibility as a prospective biomaterial for developing esthetic orthodontic brackets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.