Intra- or juxta-columnar connections of pyramidal neurons to corticospinal neurons in rat motorsensory cortices were examined with brain slices by combining intracellular staining with Golgi-like retrograde labeling of corticospinal neurons. Of 108 intracellularly labeled pyramidal neurons, 27 neurons were selected for morphological analysis by successful staining of their axonal arborizations and sufficient retrograde labeling of corticospinal neurons. Many varicosities of local axon collaterals of each pyramidal neuron were closely apposed to the dendrites of corticospinal neurons, suggesting the convergent projections of layer II-VI pyramidal neurons to corticospinal neurons. Particularly, the varicosities of a layer IV star-pyramidal neuron made two- to three-fold more appositions to the dendrites of corticospinal neurons than those of a pyramidal neuron in the other layers. Fifteen appositions were examined electron-microscopically and 60% of them made asymmetric axospinous synapses. The present results together with those of the preceding report suggest that thalamic inputs are conveyed to corticospinal neurons preferentially via layer IV star-pyramidal neurons with phasic response properties, and thereby might contribute to the initiation or switching of movement. In contrast, inputs with tonic response properties from the other layers seem to be integrated in corticospinal neurons, and might be useful in maintaining the activity of corticospinal neurons.
To study cortical motor control, we examined electrical characteristics of pyramidal neurons in the present report, and intra- or juxta-columnar connections of the pyramidal neurons to corticospinal neurons in the accompanying report. Pyramidal neurons were intracellularly recorded and stained in slices of rat motorsensory cortices (areas FL, HL and M1) where many corticospinal neurons were labeled retrogradely. They were morphologically classified into classical, star and other modified pyramidal neurons, and electrophysiologically into regular-spiking (RS), intrinsic bursting (IB) and irregular-spiking (IS) neurons on the basis of spiking pattern in response to 500 ms depolarizing current pulses. RS responses were further divided into RS with slow adaptation (RS-SA) and RS with fast adaptation (RS-FA). The electrical properties were associated with the laminar location of the neurons; RS-SA responses were observed frequently in layer II/III and less frequently in layers IV-VI, and IB and IS responses were exclusively found in layers V and VI, respectively. Interestingly, all layer IV neurons in area FL/HL were RS-FA star-pyramidal neurons, whereas layer IV neurons in area M1 were RS-SA classical pyramidal neurons. Although weak stimulation of areas FL/HL and M1 is known to elicit movement, these results suggest different information processings between the two areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.