Forel‐H‐tomy for intractable epilepsy was introduced by Dennosuke Jinnai in the 1960s. Recently, Forel‐H‐tomy was renamed to “pallidothalamic tractotomy” and revived for the treatment of Parkinson's disease and dystonia. Two of our patients with movement disorders and comorbid epilepsy experienced significant seizure reduction after pallidothalamic tractotomy, demonstrating the efficacy of this method. The first was a 29‐year‐old woman who had temporal lobe epilepsy with focal impaired awareness seizure once every three months and an aura 10‐20 times daily, even with four antiseizure medicines. For the treatment of hand dyskinesia, she underwent left pallidothalamic tractotomy and her right‐hand dyskinesia significantly improved. Fourteen months later, she had experienced no focal impaired awareness seizure and the aura decreased to one to three times per month. The second case was that of a 15‐year‐old boy diagnosed with progressive myoclonic epilepsy, who developed generalized tonic‐clonic seizure, which manifested once every month, despite treatment with five antiseizure medicines. After surgery, myoclonic movements in his right hand slightly improved. A one‐year follow‐up revealed that he had not experienced a generalized tonic‐clonic seizure. The lesion locations in the two cases were close to the vicinity of Jinnai's Forel‐H‐tomy. Forel's field H deserves reconsideration as a treatment target for intractable epilepsy.
BACKGROUND Eagle syndrome, or elongated styloid process syndrome, is a rare cause of cerebral infarction. When the styloid process is elongated but the internal carotid artery (ICA) is morphologically normal on three-dimensional computed tomography angiography (3D-CTA), determining the causal relationship between elongation and cerebral infarction is difficult. OBSERVATIONS The patient was a 27-year-old man who experienced two left cerebral infarctions in 3 months. On 3D-CTA, the styloid process was elongated, but the structure of the ICA was normal. When the patient’s neck was rotated leftward, the peak systolic velocity and pulsatility index increased (shown via dynamic subtraction ultrasonography) and ICA stenosis was evident (shown via subtraction angiography). The styloid process was removed, and the cerebral infarction did not recur in the 2 years after surgery. LESSONS This is the first report to document that indirect compression of ICA by the styloid process can cause Eagle syndrome. The blood flow changes of the ICA on dynamic ultrasonography revealed morphological changes that were hidden on 3D-CTA or nondynamic subtraction angiography.
End folium sclerosis or hippocampal sclerosis (HS) type 3 is often associated with another coexisting epileptogenic lesion (dual pathology); however, the pathogenesis of HS type 3 remains elusive. A 46‐year‐old man presented with medically intractable focal aware seizures and focal impaired awareness seizures (FIAS) with occasional focal to bilateral tonic–clonic seizures (FBTCS) two years after surgical treatment with extensive cranial reconstruction for a brain abscess in the right temporal lobe associated with intracranial extension of ipsilateral cholesteatoma. Head magnetic resonance imaging (MRI) at age 49 revealed atrophy of the right cerebral hemisphere including the hippocampus and amygdala. The patient's first epilepsy surgery was a lateral temporal lobectomy, in which the mesial temporal structures were preserved because no epileptiform discharge was detected on the intraoperative electrocorticogram. However, FIAS with FBTCS started 15 months after the operation. The second surgery, amygdalohippocampectomy, at age 52, resulted in the patient being seizure‐free again for one year before seizures of the right lateral temporal origin recurred. He underwent a third surgery, resection of the Heschl's and supramarginal gyri, at age 53, but he continued to have drug‐resistant epilepsy over two years after that. Histopathological examination revealed dual pathology consisting of glial scar in the lateral temporal lobe and ipsilateral HS type 3 with an unusually severe lesion in the subiculum. No significant inflammatory change was observed. The clinicopathological features in the present case indicate that HS developed secondarily in the context of neocortical epilepsy due to glial scar, suggesting a role of repetitive abnormal electrical input from neocortical epileptogenic lesions into the hippocampus finally via the perforant pathway in the pathogenesis of HS type 3. Severe hippocampal atrophy on preoperative MRI together with its silent electrocorticogram recording at initial epilepsy surgery may represent clinically pre‐epileptogenic HS in a seizure‐free “silent or latent period” before completion of hippocampal epileptogenesis to the extent that clinical epileptic seizures occur.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.