Sirt1, a NAD-dependent protein deacetylase, is reported to regulate intracellular metabolism and attenuate reactive oxidative species (ROS)-induced apoptosis leading to longevity and acute stress resistance. We created transgenic (TG) mice with kidney-specific overexpression of Sirt1 using the promoter sodium-phosphate cotransporter IIa (Npt2) driven specifically in proximal tubules and investigated the kidney-specific role of Sirt1 in the protection against acute kidney injury (AKI). We also elucidated the role of number or function of peroxisome and mitochondria in mediating the mechanisms for renal protective effects of Sirt1 in AKI. Cisplatin-induced AKI decreased the number and function of peroxisomes as well as mitochondria and led to increased local levels of ROS production and renal tubular apoptotic cells. TG mice treated with cisplatin mitigated AKI, local ROS, and renal tubular apoptotic tubular cells. Consistent with these results, TG mice treated with cisplatin also exhibited recovery of peroxisome number and function, as well as rescued mitochondrial function; however, mitochondrial number was not recovered. Immunoelectron microscopic findings consistently demonstrated that the decrease in peroxisome number by cisplatin in wild type mice was restored in transgenic mice. In HK-2 cells, a cultured proximal tubule cell line, overexpression of Sirt1 rescued the cisplatin-induced cell apoptosis through the restoration of peroxisome number, although the mitochondria number was not restored. These results indicate that Sirt1 overexpression in proximal tubules rescues cisplatin-induced AKI by maintaining peroxisomes number and function, concomitant up-regulation of catalase, and elimination of renal ROS levels. Renal Sirt1 can be a potential therapeutic target for the treatment of AKI.
Abstract-Dimethylarginie dimethylaminohydrolase (DDAH) degrades asymmetric dimethylarginine (ADMA), an endogenous nitric oxide (NO) synthase inhibitor, and comprises 2 isoforms, DDAH1 and DDAH2. To investigate the in vivo role of DDAH2, we generated trangenic mice overexpressing DDAH2. The transgenic mice manifested reductions in plasma ADMA and elevations in cardiac NO levels but no changes in systemic blood pressure (SBP), compared with the wild-type mice. When infused into wild-type mice for 4 weeks, ADMA elevated SBP and caused marked medial thickening and perivascular fibrosis in coronary microvessels, which were accompanied by ACE protein upregulation and cardiac oxidative stress. The treatment with amlodipine reduced SBP but failed to ameliorate the ADMA-induced histological changes. In contrast, these changes were abolished in transgenic mice, with a reduction in plasma ADMA. In coronary artery endothelial cells, ADMA activated p38 MAP kinase and the ADMA-induced ACE upregulation was suppressed by p38 MAP kinase inhibition by SB203580. In wild-type mice, long-term treatment with angiotensin II increased plasma ADMA and cardiac oxidative stress and caused similar vascular injury. In transgenic mice, these changes were attenuated. The present study suggests that DDAH2/ADMA regulates cardiac NO levels but has modest effect on SBP in normal conditions. Under the circumstances where plasma ADMA are elevated, including angiotensin II-activated conditions, ADMA serves to contribute to the development of vascular injury and increased cardiac oxidative stress, and the overexpression of DDAH2 attenuates these abnormalities. Collectively, the DDAH2/ADMA pathway can be a novel therapeutic target for vasculopathy in the ADMA or angiotensin II-induced pathophysiological conditions. (Circ Res. 2007;101:e2-e10.)Key Words: DDAH2 Ⅲ ADMA Ⅲ angiotensin II A symmetric dimethylarginine (ADMA) is an endogenous competitive inhibitor of nitric oxide synthase (NOS). Substantial evidence has been accumulated that plasma ADMA mediates the endothelial dysfunction and serves as a marker of risk for cardiovascular disease. 1-3 ADMA is degraded by the enzyme, dimethylarginine dimethylaminohydrolase (DDAH), and would subsequently affect NO metabolism. It has been demonstrated that DDAH is composed of 2 isoforms, DDAH1 and DDAH2, 4 each of which stems from different chromosomes and differs in several aspects. DDAH1 and 2 appear to have distinct tissue distributions, with DDAH1 predominating in the tissues that express nNOS and DDAH2 being coexpressed with eNOS in highly vascularized tissues. 5 Moreover, in cultured human endothelial cells, DDAH1 is uniformly distributed in the cytosol and nucleus, whereas DDAH2 is found only in the cytosol. 6 The different characteristics between these 2 isoforms suggest different physiological functions.Physiological function of DDAH1 has been elucidated by the studies using transgenic (TG) mice overexpressing DDAH1 7 and DDAH1 knockout (KO) mice. 8 In TG mice, tissue DDAH1 expression is increased and t...
The development of obesity involves multiple mechanisms. Here, we identify adipocyte signaling through the guanosine triphosphatase Rho and its effector Rho-kinase as one such mechanism. Mice fed a high-fat diet (HFD) showed increased Rho-kinase activity in adipose tissue compared to mice fed a low-fat diet. Treatment with the Rho-kinase inhibitor fasudil attenuated weight gain and insulin resistance in mice on a HFD. Transgenic mice overexpressing an adipocyte-specific, dominant-negative form of RhoA (DN-RhoA TG mice) showed decreased Rho-kinase activity in adipocytes, decreased HFD-induced weight gain, and improved glucose metabolism compared to wild-type littermates. Furthermore, compared to HFD-fed wild-type littermates, DN-RhoA TG mice on a HFD showed decreased adipocyte hypertrophy, reduced macrophage recruitment to adipose tissue, and lower expression of mRNAs encoding various adipocytokines. Lipid accumulation in cultured adipocytes was associated with increased Rho-kinase activity and increased abundance of adipocytokine transcripts, which was reversed by a Rho-kinase inhibitor. Direct application of mechanical stretch to mature adipocytes increased Rho-kinase activity and stress fiber formation. Stress fiber formation, which was also observed in adipocytes from HFD-fed mice, was prevented by Rho-kinase inhibition and in DN-RhoA TG mice. Our findings indicate that lipid accumulation in adipocytes activates Rho to Rho-kinase (Rho-Rho-kinase) signaling at least in part through mechanical stretch and implicate Rho-Rho-kinase signaling in inflammatory changes in adipose tissue in obesity. Thus, inhibition of Rho-Rho-kinase signaling may provide a therapeutic strategy for disrupting a vicious cycle of adipocyte stretch, Rho-Rho-kinase signaling, and inflammation of adipose tissue that contributes to and aggravates obesity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.