While convolutional neural networks (CNNs) have been successfully applied to many challenging classification applications, they typically require large datasets for training. When the availability of labeled data is limited, data augmentation is a critical preprocessing step for CNNs. However, data augmentation for wearable sensor data has not been deeply investigated yet.In this paper, various data augmentation methods for wearable sensor data are proposed. The proposed methods and CNNs are applied to the classification of the motor state of Parkinson's Disease patients, which is challenging due to small dataset size, noisy labels, and large intra-class variability. Appropriate augmentation improves the classification performance from 77.54% to 86.88%.
Control of relative timing is critical in ensemble music performance. We hypothesize that players respond to and correct asynchronies in tone onsets that arise from fluctuations in their individual tempos. We propose a first-order linear phase correction model and demonstrate that optimal performance that minimizes asynchrony variance predicts a specific value for the correction gain. In two separate case studies, two internationally recognized string quartets repeatedly performed a short excerpt from the fourth movement of Haydn's quartet Op. 74 no. 1, with intentional, but unrehearsed, expressive variations in timing. Time series analysis of successive tone onset asynchronies was used to estimate correction gains for all pairs of players. On average, both quartets exhibited near-optimal gain. However, individual gains revealed contrasting patterns of adjustment between some pairs of players. In one quartet, the first violinist exhibited less adjustment to the others compared with their adjustment to her. In the second quartet, the levels of correction by the first violinist matched those exhibited by the others. These correction patterns may be seen as reflecting contrasting strategies of first-violin-led autocracy versus democracy. The time series approach we propose affords a sensitive method for investigating subtle contrasts in music ensemble synchronization.
Assistive and rehabilitation devices are a promising and challenging field of recent robotics research. Motivated by societal needs such as aging populations, such devices can support motor functionality and subject training. The design, control, sensing, and assessment of the devices become more sophisticated due to a human in the loop. This paper gives a human–robot interaction perspective on current issues and opportunities in the field. On the topic of control and machine learning, approaches that support but do not distract subjects are reviewed. Options to provide sensory user feedback that are currently missing from robotic devices are outlined. Parallels between device acceptance and affective computing are made. Furthermore, requirements for functional assessment protocols that relate to real-world tasks are discussed. In all topic areas, the design of human-oriented frameworks and methods is dominated by challenges related to the close interaction between the human and robotic device. This paper discusses the aforementioned aspects in order to open up new perspectives for future robotic solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.