Cytokinins (CKs) are thought to play important roles in fruit development, especially cell division. However, the mechanisms and regulation of CK activity have not been well investigated. This study analysed CK concentrations and expression of genes involved in CK metabolism in developing tomato (Solanum lycopersicum) ovaries. The concentrations of CK ribosides and isopentenyladenine and the transcript levels of the CK biosynthetic genes SlIPT3, SlIPT4, SlLOG6, and SlLOG8 were high at anthesis and decreased immediately afterward. In contrast, trans-zeatin concentration and the transcript levels of the CK biosynthetic genes SlIPT1, SlIPT2, SlCYP735A1, SlCYP735A2, and SlLOG2 increased after anthesis. The expression of type-A response regulator genes was high in tomato ovaries from pre-anthesis to early post-anthesis stages. These results suggest that the CK signal transduction pathway is active in the cell division phase of fruit development. This study also investigated the effect of CK application on fruit set and development. Application of a synthetic CK, N-(2-chloro-pyridin-4-yl)-N’-phenylurea (CPPU), to unpollinated tomato ovaries induced parthenocarpic fruit development. The CPPU-induced parthenocarpic fruits were smaller than pollinated fruits, because of reduction of pericarp cell size rather than reduced cell number. Thus, CPPU-induced parthenocarpy was attributable to the promotion of cell division, not cell expansion. Overall, the results provide evidence that CKs are involved in cell division during development of tomato fruit.
Low-cost heating is needed to reduce chilling injuries, heating costs, and CO 2 emission during greenhouse tomato production. To acquire information about the physiological and morphological effects of root-zone heating, an economical option at low air temperatures, we grew tomato plants on a nutrient film technique hydroponic system in a heated nutrient solution. We investigated the effects of short-term root-zone heating after transplanting and long-term heating until harvest. We measured short-term plant growth, nutrient uptake, root activity (xylem exudation and root respiration rates), root indole-3-acetic acid (IAA) concentration, internal root structure, and long-term fruit weight and dry matter distribution. The minimum root-zone temperature was maintained at 16.6°C, while the minimum air temperature (5.9°C) and the minimum root-zone temperature in the control (5.8°C) were lower than optimal. After 7 days of root-zone heating, root dry weight and relative growth rate increased compared with those of the control, accompanied by increased mineral nutrient uptake and xylem exudation. These changes may explain the increased shoot growth after 21 days of heating. In roots, development of the epidermis and stele, including the xylem, was promoted by heating, in contrast to previous research on root-zone cooling at high air temperature, which promoted xylem-specific development. Although the proportion of dry matter distributed to the fruit was not changed by root-zone heating, individual fruit size and total yield were higher than in the control due to a higher total dry weight in the heating treatment. Our results suggest that root-zone heating is an effective lowcost heating technology at low air temperature because of its effects on root activity, growth, and fruit yield, but that the mechanisms may differ from those in root-zone cooling at high air temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.