Lithium-ion cells with 5-Ah capacity were fabricated using a spinel Li 1.1 ͑Ni 0.025 Ti 0.025 Mg 0.02 ͒Mn 1.83 O 4 as a cathode active material, graphitized carbon as an anode active material, and 1 M LiPF 6 /ethylene carbonate + diethyl carbonate + dimethyl carbonate as an electrolyte. In order to improve the calendar life of the cell, we investigated the degradation mechanism by measuring the thickness of the solid electrolyte interphase ͑SEI͒ on anode active material. The SEI thickness was measured by focused ion beam, scanning electron microscope, and X-ray photoelectron spectroscopy. The thickness of the SEI was initially 0.04 m, and after storage for 392 days at 25 and 40°C, the thickness was 0.15 and 0.45 m, respectively. The capacity decreased with increase in the thickness of SEI, because Li in the cell is consumed by forming SEI. The amount of Li consumption was estimated theoretically assuming that SEI is formed by a reaction between intercalated Li and the electrolyte in SEI on the negative carbon surface, and a diffusion of the electrolyte in the SEI is the rate-determining step of the reaction. The theoretical equation showed a good agreement with experimental capacity fade at 25, 40, and 60°C for the storing days up to 380 days. A voltage decrease of the cell after 1-s at 20 A of discharge current was measured to estimate roughly the increase of the cell internal resistance during storage. The increase of SEI resistance was estimated by the theoretical equation and compared with the experimental voltage drop data after 1-s discharge. However, the theoretical data was not in a good agreement with the experimental data. The reason is that the charge-transfer resistance on the anode also increases during storage. Another reason is the resistance change of the cathode during the storage.
Background Pulmonary arteriovenous malformations (PAVMs) are rarely encountered in clinical practice. The prevalence of PAVMs associated with hereditary hemorrhagic telangiectasia (HHT) has been estimated based on the rate in the family members of HHT patients, but the prevalence of PAVMs in the general population remains unknown. Methods We retrospectively examined the prevalence and clinical characteristics of PAVMs as detected by a low-dose thoracic CT screening program for lung cancer at the Hitachi Medical Center and the Hitachi General Health Care Center in the northern part of Ibaraki Prefecture, Japan.Results From 2001 to 2007, we identified eight patients (seven females and one male) with PAVMs among 21,235 initial screening participants (the mean age of the patients with PAVMs and that of the screening participants was 60.6 years). The prevalence of PAVMs was estimated at 38 per 100,000 individuals [95% confidence interval (CI)=18-76]. The diameter of the PAVMs was a mean of 6.6 mm, and none of the lesions could be detected by chest X-ray. Females older than 60 years tended to have larger PAVMs than younger women did (p=0.06). Two patients (25%) were diagnosed with HHT. One patient had previously undergone surgery for a brain abscess. Conclusion PAVMs are more prevalent than previously reported, especially among females.
Global water security is jeopardized by the presence of anthropogenic contaminants, which can persist resiliently in the environment and adversely affect human health. Surface adsorption of polluting species is an effective technique for water purification. In this work, redox-active magnetic compounds were designed for the targeted removal of inorganic and organic anions in water via polymeric redox-active vinylferrocene (VFc) and pyrrole (Py) moieties. An Fe3O4@SiO2@PPy@P(VFc-co-HEMA) composite was prepared in a four-step process, with the outermost layer possessing heightened hydrophilicity as a result of the optimized incorporation of 2-hydroxyethylmethacrylate (HEMA) monomers into the backbone of the ferrocene macromolecule. The synthesized materials are able to separate carcinogenic hexavalent chromium oxyanions and other charged micropollutants, and exhibit a 2-fold or greater enhancement in adsorption uptake once the redox-active ferrocene groups are oxidized to ferrocenium cations, with capacities of 23, 49, 66, and 95 mg/g VFc for maleic acid, 2-(6-methoxy-2-naphthyl)propionic acid (Naproxen), (2,4-dichlorophenoxy)acetic acid (2,4-D), and (2-dodecylbenzene)sulfonic acid (DBS), respectively, and a > 99% extractability of chromium in the 1 ppm range. The application of redox-active components to a magnetic particulate scaffold improves maneuverability and phase contact, giving rise to new potential aqueous separation process frameworks for water or product purification.
A framework of ferrocene-containing polymers bearing adjustable pH-and redox-active properties in aqueous electrolyte environments was developed. The electroactive metallopolymers were designed to possess enhanced hydrophilicity compared to the vinylferrocene (VFc) homopolymer, poly-(vinylferrocene) (PVFc), by virtue of the comonomer incorporated into the macromolecule, and could also be prepared as conductive nanoporous carbon nanotube (CNT) composites that offered a variety of different redox potentials spanning a ca. 300 mV range. The presence of charged non-redox-active moieties such as methacrylate (MA) in the polymeric structure endowed it with acid dissociation properties that interacted synergistically with the redox activity of the ferrocene moieties to impart pH-dependent electrochemical behavior to the overall polymer, which was subsequently studied and compared to several Nernstian relationships in both homogeneous and heterogeneous configurations. This zwitterionic characteristic was leveraged for the enhanced electrochemical separation of several transition metal oxyanions using a P(VFc 0.63 -co-MA 0.37 )-CNT polyelectrolyte electrode, which yielded an almost twofold preference for chromium as hydrogen chromate versus its chromate form, and also exemplified the electrochemically mediated and innately reversible nature of the separation process through the capture and release of vanadium oxyanions. These investigations into pH-sensitive redox-active materials provide insight for future developments in stimuliresponsive molecular recognition, with extendibility to areas such as electrochemical sensing and selective separation for water purification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.