Deep learning methods have recently achieved impressive performance in the area of visual recognition and speech recognition. In this paper, we propose a handwriting recognition method based on relaxation convolutional neural network (R-CNN) and alternately trained relaxation convolutional neural network (ATR-CNN). Previous methods regularize CNN at full-connected layer or spatial-pooling layer, however, we focus on convolutional layer. The relaxation convolution layer adopted in our R-CNN, unlike traditional convolutional layer, does not require neurons within a feature map to share the same convolutional kernel, endowing the neural network with more expressive power. As relaxation convolution sharply increase the total number of parameters, we adopt alternate training in ATR-CNN to regularize the neural network during training procedure. Our previous C-NN took the 1st place in ICDAR'13 Chinese Handwriting Character Recognition Competition, while our latest ATR-CNN outperforms our previous one and achieves the state-of-the-art accuracy with an error rate of 3.94%, further narrowing the gap between machine and human observers (3.87%).
Because of the various appearance (different writers, writing styles, noise, etc.), the handwritten character recognition is one of the most challenging task in pattern recognition. Through decades of research, the traditional method has reached its limit while the emergence of deep learning provides a new way to break this limit. In this paper, a CNN-based handwritten character recognition framework is proposed. In this framework, proper sample generation, training scheme and CNN network structure are employed according to the properties of handwritten characters. In the experiments, the proposed framework performed even better than human on handwritten digit (MNIST) and Chinese character (CASIA) recognition. The advantage of this framework is proved by these experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.