Introduction: Studies are yet to characterize the differences in molecular profiles of lung adenocarcinoma (LUAD) among divergent ethnic groups. Herein, we conducted comprehensive molecular profiling of LUAD in never or light smokers from Asia to discover novel targetable mutations and prognostic biomarkers of this distinct disease entity. Methods: We analyzed 996 cases of Japanese LUAD and performed whole-exome sequencing and RNA-seq in 125 cases of Japanese LUAD negative for the driver oncogenes defined by conventional laboratory testing. We also investigated the clinical and pathologic characteristics among the 996 cases. Results: Driver oncogenes were identified in 88 cases (70.4%) with specific hotspot mutations differing from those in The Cancer Genome Atlas study. Two actionable novel fusions of FGFR2 and NRG2a were also identified. Clustering on the basis of mRNA expression profiles, but not genetic mutational ones, could predict patient prognosis. The risk score generated by the expression of a three-gene set was a strong prognostic marker for overall survival and progression-free survival in our cohort, and was further validated using The Cancer Genome Atlas cohort. Among the 996 cases, each driver alteration is distributed across all histologic subtypes. Adenocarcinoma in situ was identified to harbor driver mutations, suggesting that these alterations are early events in the pathogenesis of LUAD. ERBB2 mutations were over-represented in young adults. Conclusions: This study indicates the value of applying gene expression profiling for predicting the prognosis after a surgical operation, and that the identification of actionable mutations is important for optimizing targeted drugs in Japanese LUAD.
Invasive mucinous adenocarcinoma (IMA) of the lung is a unique variant of lung adenocarcinoma.Aberrant mucin expression is associated with cancer development and metastasis. However, the clinicopathological significance of mucin expression in IMA is not fully understood. Herein, we evaluated the clinicopathological, immunohistochemical, and molecular characteristics of 70 IMA tumors. EGFR, KRAS, GNAS, and TP53 mutations were assessed by PCR-based sequencing.Next-generation sequencing was used to assess cases without EGFR/KRAS mutations. A NanoString-based screening for fusions was performed in all IMAs without mitogenic driver mutations. Expression of mucins (MUC1, MUC2, MUC4, MUC5AC, and MUC6) was evaluated by immunohistochemistry and categorized as follows: negative (<10% of tumor cells), patchy expression (<90% of tumor cells), or diffuse expression (≥90% of tumor cells).Immunohistochemical testing for transcription factors (TTF-1, CDX-2, HNF1β, HNF3α, HNF3β, and HNF4α) was also performed. As expected, KRAS mutations were the most common (in 67% of cases), followed by small numbers of other alterations. Patchy or diffuse expression of MUC1, MUC2, MUC4, MUC5AC, and MUC6 was observed in 52% or 6%, 3% or 0%, 30% or 3%, 26% or 73%, and 59% or 27% of cases, respectively. Furthermore, all IMAs were generally positive for HNF1β (100%), HNF3α (100%), HNF3β (100%), and HNF4α (99%) but were positive less often for TTF-1 (6%) and CDX2 (9%). Overall, there was no significant correlation between mucin expression and transcription factor expression. Unexpectedly, diffuse expression of MUC6 was significantly associated with KRAS-wild type tumors (p=0.0008), smaller tumor size (p=0.0073), and tumors in female patients (p=0.0359) in multivariate analyses. Furthermore, patients with tumors exhibiting diffuse MUC6 expression had significantly favorable outcomes. Notably, none of these patients died of the disease. Our data suggested that diffuse expression of MUC6 defines a distinct clinicopathological subset of IMA characterized by wild-type KRAS and possibly less aggressive clinical course.
Comparison of ASCL1, NEUROD1, and POU2F3 expression in surgically resected specimens, paired tissue microarrays, and lymph node metastases in small cell lung carcinoma Aims: Subtypes of small cell lung carcinoma (SCLC) are defined by the expression of ASCL1, NEUROD1, and POU2F3 markers. The aim of our study was to explore the extent to which the intratumoral heterogeneity of ASCL1, NEUROD1, and POU2F3 may lead to discrepancies in expression of these markers in surgical samples and their matched tissue microarray (TMA) and lymph node (LN) metastatic sites. Methods and results: The cohort included 77 patients with SCLC. Immunohistochemical examinations were performed on whole slides of the primary tumour, paired TMAs, and metastatic LN sites. Samples with H-scores >50 were considered positive. Based on the ASCL1, NEUROD1, and POU2F3 staining pattern, we grouped the tumours as follows: ASCL1-dominant (SCLC-A), NEUROD1-dominant (SCLC-N), ASCL1/ NEUROD1 double-negative with POU2F3 expression (SCLC-P), and negative for all three markers (SCLC-I). In whole slides, 40 SCLC-A (52%), 20 SCLC-N (26%), 15 SCLC-P (20%), and two SCLC-I (3%) tumours were identified. Comparisons of TMAs or LN metastatic sites and corresponding surgical specimens showed that positivity for ASCL1, NEUROD1, and POU2F3 in TMAs (all P < 0.0001) or LN metastatic sites (ASCL1, P = 0.0047; NEUROD1, P = 0.0069; POU2F3, P < 0.0001) correlated significantly with that of corresponding surgical specimens. Conclusion:The positivity for these markers in TMAs and LN metastatic sites was significantly correlated with that of corresponding surgical specimens, indicating that biopsy specimens could be used to identify molecular subtypes of SCLC in patients.
Aims In the evolving era of precision medicine, increasing emphasis is placed on detecting molecular alterations driving the development of specific cancers and targeting them with matched therapies that can yield the best outcomes for patients. Lung adenocarcinomas with uncommon actionable alterations, including MET exon 14 skipping (METex14), ERBB2 and BRAF mutations, are rare and poorly characterised cancers. Methods and results To more clearly understand the histopathological features of lung adenocarcinoma with uncommon actionable alterations, we compared the histological features of 678 cases with mitogenic driver alterations from 996 surgically resected lung adenocarcinomas. Genomic data from our cohort revealed METex14, ERBB2 and BRAF mutations in 13, 16 and 15 cases, respectively. Patients who had lung adenocarcinoma with METex14 were often elderly females. Histological features such as clear cell features (23%), hyaline globules (31%) and nuclear pleomorphism (39%) were the most frequently identified in METex14‐positive cases; among those, three cases (23%) had tumour cells with bizarre giant or multilobulated nuclei. Additionally, the micropapillary pattern was the most frequently identified in ERBB2‐mutated lung adenocarcinoma (31%). Lung adenocarcinoma with BRAF mutations tended to be less invasive, and the BRAF V600E mutation was identified in only one case with lepidic adenocarcinoma. Immunohistochemically, all METex14, ERBB2 and BRAF‐positive tumours, except for invasive mucinous adenocarcinoma, were positive for thyroid transcription factor 1 (TTF‐1). Conclusions Our data from Japanese patients showed that lung adenocarcinoma with METex14 had unique clinicopathological characteristics: tumour cells with marked nuclear pleomorphism, hyaline globules and expression of TTF‐1 in elderly women who never or lightly smoked.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.