In this study, we investigate the geological significance and the antiquity of lower crustal granulite facies metamorphism from the Rengali Domain, which lies in between the Singhbhum Craton in the north and the Eastern Ghats Mobile Belt in the south. Petrographic, mineral compositional, metamorphic reaction history and geothermobarometric studies of two representative metapelite granulite samples reveal widespread biotite melting at peak granulite facies metamorphic conditions of 7.8 ± 0.13 kbar, 849 ± 31°C and subsequent melt extraction, producing a mixture of residual granulites and melts in the Rengali Province. Depending on local bulk rock compositional variations, biotite melting produced peak metamorphic assemblages of garnet + cordierite in the more aluminous compositional domain, while garnet + orthopyroxene + cordierite resulted in domains of intermediate alumina. During post-peak cooling, there were localized developments of biotite + sillimanite + quartz symplectites replacing garnet and cordierite and biotite + quartz intergrowths after orthopyroxene. Application of garnet-orthopyroxene and garnet-biotite Fe-Mg exchange thermometers to co-existing garnet rim and symplectitic biotite show the extent of cooling to 610-660°C. Electron microprobe geochronology of texturally well constrained monazites indicates the timing of peak granulite metamorphism at 3057 ± 17 Ma and its metamorphic reheating at 2781 ± 16 Ma. The present findings when collated with available geological and geophysical data appear to indicate that the studied granulites and the associated granite gneisses, charnockite and enderbite suite of rocks of the Rengali Domain are part of the exhumed lower continental crust of the Singhbhum Craton. The significance of this Neoarchaean orogenesis in the 'Ur' supercontinent assembly is discussed.
Pseudotachylytes occur associated with mylonite and ultramylonite in the Mahanadi shear zone (MSZ) in the Eastern Ghats Mobile Belt (EGMB). The MSZ is about 200 km long curvilinear high strain zone trending WNW-ESE in its eastern part that splays out in the west. In Kantilo-Ganian segment of MSZ in northern EGMB, an interbanded sequence of granulite facies lithoassemblage has undergone ductile shearing. Kinematic studies of mylonite and ultramylonite indicate MSZ to be a NE-dipping, extensional type ductile shear zone. Non-coaxial metamorphic growth of garnet and presence of truncated sillimanite-fish in ultramylonite suggest high temperature regime during shearing. Pseudotachylytes in MSZ occur as millimetre thick layers to decimetre thick zones containing fragments of mylonite, ultramylonite and lithic clasts. Pseudotachylyte generation veins are mostly sub-parallel to C-planes and the injection veins cross-cut at high angle to these. The presence of an isotropic glassy matrix, injection features, corroded grains and dendritic microlites can be evidences for the existence of a melt phase. The composition of pseudotachylyte matrix (by EPMA) indicates silica deficiency with higher normative hypersthene, plagioclase and lower quartz compared with average whole rock composition for host. Absence of overprinting of mylonitic fabric on pseudotachylytes indicates their formation by brittle failure without passing through a plastic deformation and thus a two stage development for mylonite-ultramylonite and pseudotachylyte generation is suggested.
The Eastern Ghats Belt (EGB), characterised by pervasive Grenvillian granulite facies metamorphism, is the host to several 950-1000 Ma old massif-type anorthosite complexes. The present work describes one such complex near Udayagiri from the northern margin of the EGB, reported for the first time as “Udayagiri anorthosite complex” (UAC). The ‘massif type’ UAC comprises mainly of anorthosite, leuconorite-olivine leuconorite and norite in the decreasing order of areal extent. Mineralogically, these rocks dominantly consist of cumulates of moderately calcic plagioclase (∼An50-60), moderately magnesian intercumulus olivine (XMg: ∼0.6) and orthopyroxene (XMg : 0.47 to 0.70). Metamorphic garnet (Alm: ∼50 mol%) is also common in these rocks. Anorthosite and leuconorite of the UAC exhibit a moderate ‘+ve’ Eu anomaly. Norite occurs locally as schlierens and is relatively rich in Fe, P, Rb, Sr, Th, Nb, Ta, Y and REE which could be a residual melt product. These rocks exhibit both relict magmatic mineralogy and textures with a metamorphic impress manifested by the development of multilayered corona involving olivine, orthopyroxene, garnet, phlogopite, ilmenite and plagioclase during cooling of the pluton. The corona development is a result of combination of significant magmatic and metamorphic reactions which have the potential to provide important clues for deciphering the magmatic and metamorphic evolution of such plutons in ambient granulite facies conditions.
Magmatic Ni-Cu-platinum group element (PGE)-Te mineralization in the Gondpipri mafic-ultramafic layered intrusion of ca. 3323 ± 74 Ma age, western Bastar craton, central India, is one of the most prospective exploration targets for magmatic sulfides in India. The Gondpipri layered intrusion is divided into two distinct group of rocks based on their mineralization potential, which includes (1) mineralized layered gabbro and pyroxenite and (2) a barren olivine gabbro intrusion. The host rocks show Cu + Ni concentrations up to 5,000 ppm with a Cu/Ni ratio <1 and all platinum group element (PGE) values between 0.1 and 1.1 ppm. Mineralization occurs in two modes: type I mineralization occurring as blebs, specks, and dissemination and type II mineralization occurring as stringers and minor veins. The geochemical data suggest that the parental magma of the host rock was generated at depths between spinel and garnet peridotite mantle source regions and subsequently modified by assimilation fractional crystallization (AFC) of the continental crust. High large ion lithophile elements, Th/Yb ratios of the studied rocks, and Sm-Nd isotope studies are consistent with a depleted mantle source. The geochemical proxies such as Th versus Ba/Th and (Ta/La)PM versus (Hf/Sm)PM and higher Sr/Nd (2.21–82.58) ratios indicate involvement of fluid-related subduction metasomatism and enrichment processes in an island-arc tectonic setting. Mineral assemblages and textural relationship between platinum group minerals (PGMs) and base metal sulfides suggest that sulfide-silicate liquid immiscibility was brought about by the precipitation of magnetite/Cr magnetite resulting in sulfide saturation in the melt by decreasing S solubility. Sulfur isotope compositions (δ34S: 1.61–3.30‰) and Sm-Nd geochemistry suggest that the sulfur was added in the tholeiitic magma by magmatic process. Crustal contamination played a significant role in sulfide saturation and in bringing about PGE and Te, As, Bi, Sb, Se (TABS) mineralization. PGM-NiTeBi developed at relatively low temperatures, where moncheite (PtPd)Te2 and merenskyite (PdTe) were formed at 650°C. The identification of Ni-Cu-PGM-Te in the margin of the western Bastar craton boosts deeper subsurface exploration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.