Discovery of anti-metastatic drugs is of immense clinical significance as metastasis is responsible for 90% of all cancer deaths. Here we report the inhibitory effect of a bis schiff base (M2) on cancer cell migration and invasion in vitro and in vivo. M2 has shown good solubility and permeability across the intestinal cell wall and hence can be classified as BCS (Biopharmaceutical classification system) class I. Microarray studies identified a long non coding intergenic RNA, LINC00273 as a novel molecular target of M2. We report that LINC00273 harbors a unique (4n-1) parallel G-Quadruplex structure in its promoter as validated by DMS footprint. M2 is proposed to stabilize this G-quadruplex structure resulting in the down-regulation of LINC00273 expression. Dual Luciferase reporter assay also suggests inhibition of LINC00273 promoter activity by M2. Involvement of this linc in metastasis is proven by siRNA and shRNA mediated knock down of LINC00273 in vitro and in vivo in nude mice which significantly decelerates cancer cell migration and invasion and also makes the cells unresponsive to TGF-β's pro-metastatic effects. Furthermore, the real time expression of LINC00273 in thirty seven human clinical samples is found to be positively correlated with the histopathological staging of metastasis.
The current drug development process aims to produce safe, effective drugs within a reasonable time and at a reasonable cost. Phase II metabolism (glucuronidation) can affect drug action and pharmacokinetics to a considerable extent and so its studies and prediction at initial stages of drug development are very imperative. Extensive glucuronidation is an obstacle to oral bioavailability because the first-pass glucuronidation [or premature clearance by UDP-glucuronosyltransferases (UGTs)] of orally administered agents frequently results in poor oral bioavailability and lack of efficacy. Modeling of new chemical entities/drugs for UGTs and their kinetic data can be useful in understanding the binding patterns to be used in the design of better molecules. This review concentrates on first-pass glucuronidation by intestinal UGTs, including their topology, expression profile, and pharmacogenomics. In addition, recent advances are discussed with respect to substrate selectivity at the binding pocket, structural requirements, and mechanism of enzyme actions.
An alkali-thermostable β-mannanase gene from Bacillus nealsonii PN-11 was cloned by functional screening of E. coli cells transformed with pSMART/HaeIII genomic library. The ORF encoding mannanase consisted of 1100 bp, corresponding to protein of 369 amino acids and has a catalytic domain belonging to glycoside hydrolase family 5. Cloned mannanase was smaller in size than the native mannanase by 10 kDa. This change in molecular mass could be because of difference in the glycosylation. The tertiary structure of the β-mannanase (MANPN11) was designed and it showed a classical (α/β) TIM-like barrel motif. Active site of MANPN11 was represented by 8 amino acid residues viz., Glu152, Trp189, His217, Tyr219, Glu247, Trp276, Trp285, and Tyr287. Model surface charge of MANPN11 predicted that surface near active site was mostly negative, and the opposite side was positive which might be responsible for the stability of the enzymes at high pH. Stability of MANPN11 at alkaline pH was further supported by the formation of a hydrophobic pocket near active site of the enzyme. To understand the ability of MANPN11 to bind with different substrates, docking studies were performed and found that mannopentose fitted properly into active site and form stable enzyme substrate complex.
Uridine 5 0 -diphospho-glucuronosyltransferase-1A9 (UGT1A9) expressed in the liver, shows good sequence identity with UGT1A10, expressed in the intestine. Both uridine 5 0 -diphospho-glucuronosyltransferase (UGT) isoforms show comprehensive overlapping substrate selectivity but there are differences in stereoselectivity, regiospecificity and rate of glucuronidation of the substrates. Multiple sequence alignment analyses of UGT1A9 and UGT1A10 showed that 13% of the residues in N-terminal domain (NTD) are non-identical between them. Herein, authors attempted homology modelling of UGT1A9 and UGT1A10 and validation using software tools and reported mutagenic studies. A molecular docking study of the known substrates is performed on UGT1A9 and UGT1A10 homology models. The non-identical Nterminal residues ranging from 111 to 117 in UGT1A9 and UGT1A10 were identified to play a central role in the substrate selectivity. However, substrate binding is performed by Ser111, Gly115 and Leu117 in UGT1A10 and Gly111, Asp115 and Phe117 in UGT1A9. This study reports new residues in NTD, showing interaction with uridine 5 0 -diphospho-glucuronic acid which binds with C-terminal domain. Further, molecular dynamics simulations were carried out to study the role of non-identical residues in substrate identification. The study demonstrates the folding of the UGT enzyme, particularly, helix-loop-helix transition and movement of Na3-2 helix, in response to substrate and co-substrate binding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.