This 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations (CoSTR) for neonatal life support includes evidence from 7 systematic reviews, 3 scoping reviews, and 12 evidence updates. The Neonatal Life Support Task Force generally determined by consensus the type of evidence evaluation to perform; the topics for the evidence updates followed consultation with International Liaison Committee on Resuscitation member resuscitation councils. The 2020 CoSTRs for neonatal life support are published either as new statements or, if appropriate, reiterations of existing statements when the task force found they remained valid. Evidence review topics of particular interest include the use of suction in the presence of both clear and meconium-stained amniotic fluid, sustained inflations for initiation of positive-pressure ventilation, initial oxygen concentrations for initiation of resuscitation in both preterm and term infants, use of epinephrine (adrenaline) when ventilation and compressions fail to stabilize the newborn infant, appropriate routes of drug delivery during resuscitation, and consideration of when it is appropriate to redirect resuscitation efforts after significant efforts have failed. All sections of the Neonatal Resuscitation Algorithm are addressed, from preparation through to postresuscitation care. This document now forms the basis for ongoing evidence evaluation and reevaluation, which will be triggered as further evidence is published. Over 140 million babies are born annually worldwide ( https://ourworldindata.org/grapher/births-and-deaths-projected-to-2100 ). If up to 5% receive positive-pressure ventilation, this evidence evaluation is relevant to more than 7 million newborn infants every year. However, in terms of early care of the newborn infant, some of the topics addressed are relevant to every single baby born.
Congenital Diaphragmatic hernia (CDH) is a condition characterized by a defect in the diaphragm leading to protrusion of abdominal contents into the thoracic cavity interfering with normal development of the lungs. The defect may range from a small aperture in the posterior muscle rim to complete absence of diaphragm.The pathophysiology of CDH is a combination of lung hypoplasia and immaturity associated with persistent pulmonary hypertension of newborn (PPHN) and cardiac dysfunction. Prenatal assessment of lung to head ratio (LHR) and position of the liver by ultrasound are used to diagnose and predict outcomes. Delivery of infants with CDH is recommended close to term gestation. Immediate management at birth includes bowel decompression, avoidance of mask ventilation and endotracheal tube placement if required. The main focus of management includes gentle ventilation, hemodynamic monitoring and treatment of pulmonary hypertension followed by surgery. Although inhaled nitric oxide is not approved by FDA for the treatment of PPHN induced by CDH, it is commonly used.Extracorporeal membrane oxygenation (ECMO) is typically considered after failure of conventional medical management for infants ≥ 34 weeks’ gestation or with weight >2 kg with CDH and no associated major lethal anomalies. Multiple factors such as prematurity, associated abnormalities, severity of PPHN, type of repair and need for ECMO can affect the survival of an infant with CDH. With advances in the management of CDH, the overall survival has improved and has been reported to be 70-90% in non-ECMO infants and up to 50% in infants who undergo ECMO.
Persistent pulmonary hypertension of the newborn (PPHN) is characterized by elevated pulmonary vascular resistance resulting in right-to-left shunting of blood and hypoxemia. PPHN is often secondary to parenchymal lung disease (such as meconium aspiration syndrome, pneumonia or respiratory distress syndrome) or lung hypoplasia (with congenital diaphragmatic hernia or oligohydramnios) but can also be idiopathic. The diagnosis of PPHN is based on clinical evidence of labile hypoxemia often associated with differential cyanosis. The diagnosis is confirmed by the echocardiographic demonstration of – (a) right-to-left or bidirectional shunt at the ductus or foramen ovale and/or, (b) flattening or leftward deviation of the interventricular septum and/or, (c) tricuspid regurgitation, and finally (d) absence of structural heart disease. Management strategies include optimal oxygenation, avoiding respiratory and metabolic acidosis, blood pressure stabilization, sedation and pulmonary vasodilator therapy. Failure of these measures would lead to consideration of extracorporeal membrane oxygenation (ECMO); however decreased need for this rescue therapy has been documented with advances in medical management. While trends also note improved survival, long-term neurodevelopmental disabilities such as deafness and learning disabilities remain a concern in many infants with severe PPHN.Funded by: 1R01HD072929-0 (SL)
Persistent pulmonary hypertension of the newborn (PPHN) is a syndrome of failed circulatory adaptation at birth due to delay or impairment in the normal fall in pulmonary vascular resistance (PVR) that occurs following birth. The fetus is in a state of physiological pulmonary hypertension. In utero, the fetus receives oxygenated blood from the placenta through the umbilical vein. At birth, following initiation of respiration, there is a sudden precipitous fall in the PVR and an increase of systemic vascular resistance (SVR) due to the removal of the placenta from circulation. There is dramatic increase in pulmonary blood flow with a decrease in, and later reversal of shunts at the foramen ovale and ductus arteriosus. The failure of this normal physiological pulmonary transition leads to the syndrome of PPHN. PPHN presents with varying degrees of hypoxemic respiratory failure. Survival of infants with PPHN has significantly improved with the use of gentle ventilation, surfactant and inhaled nitric oxide (iNO). PPHN is associated with significant mortality and morbidity among survivors. Newer agents that target different enzymatic pathways in the vascular smooth muscle are in different stages of development and testing. Further research using these agents is likely to further reduce morbidity and mortality associated with PPHN.
Background: Newborn infants with risk factors may require intravenous (IV) dextrose for asymptomatic hypoglycemia. Administration of IV dextrose and transfer to the neonatal intensive care unit (NICU) may interfere with parent-infant bonding. Objective: To study the effect of implementing dextrose gel supplement with feeds in late preterm/term infants affected by asymptomatic hypoglycemia on reducing IV dextrose therapy. Method: A retrospective study was conducted before and after dextrose gel use: 05/01/2014 to 10/31/2014 and 11/01/2014 to 04/30/2015, respectively. Asymptomatic hypoglycemic (blood glucose level <45 mg/dl) infants in the newborn nursery (NBN) were given a maximum of 3 doses of dextrose gel (200 mg/kg of 40% dextrose) along with feeds. Transfer to the NICU for IV dextrose was considered treatment failure. Results: Dextrose gel with feeds increased the blood glucose level in 184/250 (74%) of asymptomatic hypoglycemic infants compared to 144/248 (58%) with feeds only (p < 0.01). Transfer from the NBN to the NICU for IV dextrose decreased from 35/1,000 to 25/1,000 live births (p < 0.01). Exclusive breastfeeding improved from 19 to 28% (p = 0.03). Conclusions: Use of dextrose gel with feeds reduced the need for IV fluids, avoided separation from the mother and promoted breastfeeding. Neonates who failed dextrose gel therapy were more likely to be large for gestational age, delivered by cesarean section and had lower baseline blood glucose levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.