Indoor residual spraying with SumiShield WG was found effective, operationally feasible and safe, and it is effective for up to 6 months.
BackgroundHealth education is an important component in disease control programme. Kalajatha is a popular, traditional art form of folk theatre depicting various life processes of a local socio-cultural setting. It is an effective medium of mass communication in the Indian sub-continent especially in rural areas. Using this medium, an operational feasibility health education programme was carried out for malaria control.MethodsIn December 2001, the Kalajatha events were performed in the evening hours for two weeks in a malaria-affected district in Karnataka State, south India. Thirty local artists including ten governmental and non-governmental organizations actively participated. Impact of this programme was assessed after two months on exposed vs. non-exposed respondents.ResultsThe exposed respondents had significant increase in knowledge and change in attitude about malaria and its control strategies, especially on bio-environmental measures (p < 0.001). They could easily associate clean water with anopheline breeding and the role of larvivorous fish in malaria control. In 2002, the local community actively co-operated and participated in releasing larvivorous fish, which subsequently resulted in a noteworthy reduction of malaria cases. Immediate behavioural changes, especially maintenance of general sanitation and hygiene did not improve as much as expected.ConclusionThis study was carried out under the primary health care system involving the local community and various potential partners. Kalajatha conveyed the important messages on malaria control and prevention to the rural community. Similar methods of communication in the health education programme should be intensified with suitable modifications to reach all sectors, if malaria needs to be controlled.
BackgroundThe native gut microbiota of Anopheles mosquitoes is known to play a key role in the physiological function of its host. Interestingly, this microbiota can also influence the development of Plasmodium in its host mosquitoes. In recent years, much interest has been shown in the employment of gut symbionts derived from vectors in the control of vector-borne disease transmission. In this study, the midgut microbial diversity has been characterized among laboratory-reared adult Anopheles stephensi mosquitoes, from the colony created by rearing progeny of wild-caught mosquitoes (obtained from three different locations in southern India) for multiple generations, using 16S ribosomal RNA (rRNA) gene sequencing approach. Further, the influence of native midgut microbiota of mosquitoes on the development of rodent malaria parasite Plasmodium berghei in its host has been studied.MethodsThe microbial diversity associated with the midgut of An. stephensi mosquitoes was studied by sequencing V3 region of 16S ribosomal RNA (rRNA) gene. The influence of native midgut microbiota of An. stephensi mosquitoes on the susceptibility of the mosquitoes to rodent malaria parasite P. berghei was studied by comparing the intensity and prevalence of P. berghei infection among the antibiotic treated and untreated cohorts of mosquitoes.ResultsThe analysis of bacterial diversity from the midguts of An. stephensi showed Proteobacteria as the most dominant population among the three laboratory-reared strains of An. stephensi studied. Major genera identified among these mosquito strains were Acinetobacter, Pseudomonas, Prevotella, Corynebacterium, Veillonella, and Bacillus. The mosquito infectivity studies carried out to determine the implication of total midgut microbiota on P. berghei infection showed that mosquitoes whose native microbiota cleared with antibiotics had increased susceptibility to P. berghei infection compared to the antibiotic untreated mosquitoes with its natural native microbiota.ConclusionsThe use of microbial symbiont to reduce the competence of vectors involved in disease transmission has gained much importance in recent years as an emerging alternative approach towards disease control. In this context, the present study was aimed to identify the midgut microbiota composition of An. stephensi, and its effect on the development of P. berghei. Interestingly, the analysis of midgut microbiota from An. stephensi revealed the presence of genus Veillonella in Anopheles species for the first time. Importantly, the study also revealed the negative influence of total midgut microbiota on the development of P. berghei in three laboratory strains of An. stephensi, emphasizing the importance of understanding the gut microbiota in malaria vectors, and its relationship with parasite development in designing strategies to control malaria transmission.Electronic supplementary materialThe online version of this article (10.1186/s12936-018-2535-7) contains supplementary material, which is available to authorized users.
Malaria was a major problem in a sericulture area of Karnataka, south India, where Anopheles culicifacies s.l. and A. fluviatilis s.l. were considered to be the main vectors. Sibling species complexes of these two species were analysed in three ecologically different villages. Among A. culicifacies, only sibling species A and B were found. In Puram, a village with 22 wells, species A predominated; species B predominated in a village with four wells and a stream, and in a village with a stream and no wells. Poecilia reticulata fish were introduced into all wells and streams in the villages, and after one year no vectors were found in Puram, and all, or nearly all, A. culicifacies were species B in the other two villages. All A. fluviatilis belonged to the sibling species T. Blood meal analysis indicated that a few of the A. culicifacies collected had fed on humans while all the A. fluviatilis had fed on bovines. Before the introduction of fish, the annual parasite incidence for malaria was high in Puram, but much lower in the other two villages. From 1998 (over one year after release of fish) until 2003, no malaria cases were detected in the three villages.
BackgroundIn 2006, severe outbreaks of Aedes aegypti-transmitted chikungunya occurred in villages in Karnataka, South India. We evaluated the effectiveness of combined information, education and communication (IEC) campaigns using two potential poeciliid larvivorous fish guppy (Poecilia reticulata) and mosquitofish (Gambusia affinis), in indoor cement tanks for Aedes larval control.MethodsTrials were conducted in two villages (Domatmari and Srinivaspura) in Tumkur District from March to May 2006 for Poecilia and one village (Balmanda) in Kolar District from July to October 2006 for Gambusia. A survey on knowledge, attitude and practice (KAP) on chikungunya was initially conducted and IEC campaigns were performed before and after fish release in Domatmari (IEC alone, followed by IEC + Poecilia) and Balmanda (IEC + Gambusia). In Srinivaspura, IEC was not conducted. Larval surveys were conducted at the baseline followed by one-week and one-month post-intervention periods. The impact of fish on Aedes larvae and disease was assessed based on baseline and post-intervention observations.ResultsOnly 18% of respondents knew of the role of mosquitoes in fever outbreaks, while almost all (n = 50 each) gained new knowledge from the IEC campaigns. In Domatmari, IEC alone was not effective (OR 0.54; p = 0.067). Indoor cement tanks were the most preferred Ae. aegypti breeding habitat (86.9%), and had a significant impact on Aedes breeding (Breteau Index) in all villages in the one-week period (p < 0.001). In the one-month period, the impact was most sustained in Domatmari (OR 1.58, p < 0.001) then Srinivaspura (OR 0.45, p = 0.063) and Balmanda (OR 0.51, p = 0.067). After fish introductions, chikungunya cases were reduced by 99.87% in Domatmari, 65.48% in Srinivaspura and 68.51% in Balmanda.ConclusionsPoecilia exhibited greater survival rates than Gambusia (86.04 vs.16.03%) in cement tanks. Neither IEC nor Poecilia alone was effective against Aedes (p > 0.05). We conclude that Poecilia + IEC is an effective intervention strategy. The operational cost was 0.50 (US$ 0.011, 1 US$= 47) per capita per application. Proper water storage practices, focused IEC with Poecilia introductions and vector sanitation involving the local administration and community, is suggested as the best strategy for Aedes control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.