SummaryThe developmental programme of grape berries within a cluster is coordinated to synchronize their ripening. Altered transcriptional events and metabolite accumulation are responsible for the differential progress of ripening.
Bud dormancy in grapevine is an adaptive strategy for the survival of drought, high and low temperatures and freeze dehydration stress that limit the range of cultivar adaptation. Therefore, development of a comprehensive understanding of the biological mechanisms involved in bud dormancy is needed to promote advances in selection and breeding, and to develop improved cultural practices for existing grape cultivars. The seasonally indeterminate grapevine, which continuously develops compound axillary buds during the growing season, provides an excellent system for dissecting dormancy, because the grapevine does not transition through terminal bud development prior to dormancy. This study used gene expression patterns and targeted metabolite analysis of two grapevine genotypes that are short photoperiod responsive (Vitis riparia) and non-responsive (V. hybrid, Seyval) for dormancy development to determine differences between bud maturation and dormancy commitment. Grapevine gene expression and metabolites were monitored at seven time points under long (LD, 15 h) and short (SD, 13 h) day treatments. The use of age-matched buds and a small (2 h) photoperiod difference minimized developmental differences and allowed us to separate general photoperiod from dormancy specific gene responses. Gene expression profiles indicated three distinct phases (perception, induction and dormancy) in SD-induced dormancy development in V. riparia. Different genes from the NAC DOMAIN CONTAINING PROTEIN 19 and WRKY families of transcription factors were differentially expressed in each phase of dormancy. Metabolite and transcriptome analyses indicated ABA, trehalose, raffinose and resveratrol compounds have a potential role in dormancy commitment. Finally, a comparison between V. riparia compound axillary bud dormancy and dormancy responses in other species emphasized the relationship between dormancy and the expression of RESVERATROL SYNTHASE and genes associated with C3HC4-TYPE RING FINGER and NAC DOMAIN CONTAINING PROTEIN 19 transcription factors.
BackgroundIndividual berries in a grape (Vitis vinifera L.) cluster enter the ripening phase at different times leading to an asynchronous cluster in terms of ripening. The factors causing this variable ripening initiation among berries are not known. Because the influence via hormonal communication of the seed on fruit set and growth is well known across fruit species, differences in berry seed content and resultant quantitative or qualitative differences in the hormone signals to the pericarp likely influence the relative timing of ripening initiation among berries of the cluster.ResultsAt the time of the initiation of cluster ripening (véraison), underripe green berries have higher seed content compared to the riper berries and there is a negative correlation between the seed weight-to-berry weight ratio (SB) and the sugar level in berries of a cluster. Auxin levels in seeds relative to the pericarp tissues are two to 12 times higher at pre-ripening stages. The pericarp of berries with high-SB had higher auxin and lower abscisic acid (ABA) levels compared to those with low-SB from two weeks before véraison. In the prevéraison cluster, the expression of auxin-response factor genes was significantly higher in the pericarp of high-SB berries and remained higher until véraison compared to low-SB berries. The expression level of auxin-biosynthetic genes in the pericarp was the same between both berry groups based upon similar expression activity of YUC genes that are rate-limiting factors in auxin biosynthesis. On the other hand, in low-SB berries, the expression of ABA-biosynthetic and ABA-inducible NCED and MYB genes was higher even two weeks before véraison.ConclusionsDifferences in the relative seed content among berries plays a major role in the timing of ripening initiation. Towards the end of berry maturation phase, low and high levels of auxin are observed in the pericarp of low- and high-SB berries, respectively. This results in higher auxin-signaling activity that lasts longer in the pericarp of high-SB berries. In contrast, in low-SB berries, concomitant with an earlier decrease of auxin level, the features of ripening initiation, such as increases in ABA and sugar accumulation begin earlier.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-015-0440-6) contains supplementary material, which is available to authorized users.
BackgroundIndole-3-acetic acid (IAA), the most abundant auxin, is a growth promoter hormone involved in several developmental processes. Auxin homeostasis is very important to its function and this is achieved through the regulation of IAA biosynthesis, conjugation, degradation and transport. In grapevine, IAA plays an essential role during initial stages of berry development, since it delays fruitlet abscission by reducing the ethylene sensitivity in the abscission zone. For this reason, Continuous polar IAA transport to the pedicel is required. This kind of transport is controlled by IAA, which regulates its own movement by modifying the expression and localization of PIN-FORMED (PIN) auxin efflux facilitators that localize asymmetrically within the cell. On the other hand, the hormone gibberellin (GA) also activates the polar auxin transport by increasing PIN stability. In Vitis vinifera, fruitlet abscission occurs during the first two to three weeks after flowering. During this time, IAA and GA are present, however the role of these hormones in the control of polar auxin transport is unknown.ResultsIn this work, the use of radiolabeled IAA showed that auxin is basipetally transported during grapevine fruitlet abscission. This observation was further supported by immunolocalization of putative VvPIN proteins that display a basipetal distribution in pericarp cells. Polar auxin transport and transcripts of four putative VvPIN genes decreased in conjunction with increased abscission, and the inhibition of polar auxin transport resulted in fruit drop. GA3 and IAA treatments reduced polar auxin transport, but only GA3 treatment decreased VvPIN transcript abundance. When GA biosynthesis was blocked, IAA was capable to increase polar auxin transport, suggesting that its effect depends on GA content. Finally, we observed significant changes in the content of several IAA-related compounds during the abscission period.ConclusionsThese results provide evidence that auxin homeostasis plays a central role during grapevine initial fruit development and that GA and IAA controls auxin homeostasis by reducing polar auxin transport.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-016-0914-1) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.