Desert dust over the Indian region during pre-monsoon season is known to strengthen monsoon circulation, by modulating rainfall through the elevated heat pump (EHP) mechanism. In this context, an insight into long term trends of dust loading over this region is of significant importance in understanding monsoon variability. In this study, using long term (2000 to 2015) aerosol measurements from multiple satellites, ground stations and model based reanalysis, we show that dust loading in the atmosphere has decreased by 10 to 20% during the pre-monsoon season with respect to start of this century. Our analysis reveals that this decrease is a result of increasing pre-monsoon rainfall that in turn increases (decreases) wet scavenging (dust emissions) and slowing circulation pattern over the Northwestern part of the sub-continent.
The origin, transport pathways, and spatial variability of total organic carbon (OC)on the western Himalayan glaciers is poorly understood compared to that of black carbon (BC) and dust, but it is critically important to evaluate the climatic role of OC in the region. Applying the distribution of OC activation energy, 14 C activity and radiogenic isotopes of 208
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.