Today, web content such as images, text, speeches, and videos are user-generated, and social networks have become increasingly popular as a means for people to share their ideas and opinions. One of the most popular social media for expressing their feelings towards events that occur is Twitter. The main objective of this study is to classify and analyze the content of the affiliates of the Pension and Funds Administration (AFP) published on Twitter. This study incorporates machine learning techniques for data mining, cleaning, tokenization, exploratory analysis, classification, and sentiment analysis. To apply the study and examine the data, Twitter was used with the hashtag #afp, followed by descriptive and exploratory analysis, including metrics of the tweets. Finally, a content analysis was carried out, including word frequency calculation, lemmatization, and classification of words by sentiment, emotions, and word cloud. The study uses tweets published in the month of May 2022. Sentiment distribution was also performed in three polarity classes: positive, neutral, and negative, representing 22%, 4%, and 74% respectively. Supported by the unsupervised learning method and the K-Means algorithm, we were able to determine the number of clusters using the elbow method. Finally, the sentiment analysis and the clusters formed indicate that there is a very pronounced dispersion, the distances are not very similar, even though the data standardization work was carried out.
Monkeypox is a rare disease caused by the monkeypox virus. This disease was considered eradicated in 1980 and was believed to affect rodents and not humans. However, recent years have seen a massive outbreak of monkeypox in humans, setting off worldwide alerts from health agencies. As of September 2022, the number of confirmed cases in Peru had reached 1964. Although most monkeypox patients have been discharged, we cannot neglect the monitoring of the population with respect to the monkeypox virus. Lately, the population has started to express their feelings and opinions through social media, specifically Twitter, as it is the most used social medium and is an ideal space to gather what people think about the monkeypox virus. The information imparted through this medium can be in different formats, such as text, videos, images, audio, etc. The objective of this work is to analyze the positive, negative, and neutral feelings of people who publish their opinions on Twitter with the hashtag #Monkeypox. To find out what people think about this disease, a hybrid-based model architecture built on CNN and LSTM was used to determine the prediction accuracy. The prediction result obtained from the total monkeypox data was 83% accurate. Other performance metrics were also used to evaluate the model, such as specificity, recall level, and F1 score, representing 99%, 85%, and 88%, respectively. The results also showed the polarity of feelings through the CNN-LSTM confusion matrix, where 45.42% of people expressed neither positive nor negative opinions, while 19.45% expressed negative and fearful feelings about this infectious disease. The results of this work contribute to raising public awareness about the monkeypox virus.
<span lang="EN-US">Unit short-term memory (LSTM) is a type of recurrent neural network (RNN) whose sequence-based models are being used in text generation and/or prediction tasks, question answering, and classification systems due to their ability to learn long-term dependencies. The present research integrates the LSTM network and dropout technique to generate a text from a corpus as input, a model is developed to find the best way to extract the words from the context. For training the model, the poem "</span><em><span lang="EN-US">La Ciudad y los perros</span></em><span lang="EN-US">" which is composed of 128,600 words is used as input data. The poem was divided into two data sets, 38.88% for training and the remaining 61.12% for testing the model. The proposed model was tested in two variants: word importance and context. The results were evaluated in terms of the semantic proximity of the generated text to the given context.</span>
It is during the primary education stage that children begin to awaken their interest in science and, in turn, have new mathematical, geographical, and scientific knowledge, which are the basis for understanding astronomical aspects. This research focuses on developing an Augmented Reality Mobile Application based on the Mobile-D methodology for the teaching-learning process of astronomy in 4th and 6th grade students. The random selection design of an experimental group applied to a sample of 60 students was used, subdivided into groups of 30 students each. Finally, it can be concluded that the use of an Augmented Reality mobile application for the teaching-learning process significantly influences elementary school students in the subject of astronomy.
This work aims at discovering topics in a text corpus and classifying the most relevant terms for each of the discovered topics. The process was performed in four steps: first, document extraction and data processing; second, labeling and training of the data; third, labeling of the unseen data; and fourth, evaluation of the model performance. For processing, a total of 10,322 "curriculum" documents related to data science were collected from the web during 2018-2022. The latent dirichlet allocation (LDA) model was used for the analysis and structure of the subjects. After processing, 12 themes were generated, which allowed ranking the most relevant terms to identify the skills of each of the candidates. This work concludes that candidates interested in data science must have skills in the following topics: first, they must be technical, they must have mastery of structured query language, mastery of programming languages such as R, Python, java, and data management, among other tools associated with the technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.