Expressed sequence tags (ESTs) are generated and deposited in the public domain, as redundant, unannotated, single-pass reactions, with virtually no biological content. PipeOnline automatically analyses and transforms large collections of raw DNA-sequence data from chromatograms or FASTA files by calling the quality of bases, screening and removing vector sequences, assembling and rewriting consensus sequences of redundant input files into a unigene EST data set and finally through translation, amino acid sequence similarity searches, annotation of public databases and functional data. PipeOnline generates an annotated database, retaining the processed unigene sequence, clone/file history, alignments with similar sequences, and proposed functional classification, if available. Functional annotation is automatic and based on a novel method that relies on homology of amino acid sequence multiplicity within GenBank records. Records are examined through a function ordered browser or keyword queries with automated export of results. PipeOnline offers customization for individual projects (MyPipeOnline), automated updating and alert service. PipeOnline is available at http://stress-genomics.org.
Continuous-time Markov chain models are often used to describe the stochastic dynamics of networks of reacting chemical species, especially in the growing field of systems biology. These Markov chain models are often studied by simulating sample paths in order to generate Monte-Carlo estimates. However, discrete-event stochastic simulation of these models rapidly becomes computationally intensive. Consequently, more tractable diffusion approximations are commonly used in numerical computation, even for modest-sized networks. However, existing approximations either do not respect the constraint that chemical concentrations are never negative (linear noise approximation) or are typically only valid until the concentration of some chemical species first becomes zero (Langevin approximation).In this paper, we propose an approximation for such Markov chains via reflected diffusion processes that respect the fact that concentrations of chemical species are never negative. We call this a constrained Langevin approximation because it behaves like the Langevin approximation in the interior of the positive orthant, to which it is constrained by instantaneous reflection at the boundary of the orthant. An additional advantage of our approximation is that it can be written down immediately from the chemical reactions. This contrasts with the linear noise approximation, which involves a twostage procedure-first solve a deterministic reaction rate ordinary differential equation, followed by a stochastic differential equation for fluctuations around those solutions. Our approximation also captures the interaction of nonlinearities in the reaction rate function with the driving noise. In simulations, we have found the computation time for our approximation to be at least comparable to, and often better than, that for the linear noise approximation.Under mild assumptions, we first prove that our proposed approximation is well defined for all time. Then we prove that it can be obtained as the weak limit of a sequence of jump-diffusion processes that behave like the Langevin approximation in the interior of the positive orthant and like a rescaled version of the Markov chain on the boundary of the orthant. For this limit the-
In many cell types, epigenetic changes are partially regulated by the availability of metabolites involved in the activity of chromatin-modifying enzymes. Even so, the association between metabolism and the typical epigenetic reprogramming that occurs during preimplantation embryo development remains poorly understood. In this work, we explore the link between energy metabolism, more specifically the tricarboxylic acid cycle (TCA), and epigenetic regulation in bovine preimplantation embryos. Using a morphokinetics model of embryonic development (fast- and slow-developing embryos), we show that DNA methylation (5mC) and hydroxymethylation (5hmC) are dynamically regulated and altered by the speed of the first cleavages. More specifically, slow-developing embryos fail to perform the typical reprogramming that is necessary to ensure the generation of blastocysts with higher ability to establish specific cell lineages. Transcriptome analysis revealed that such differences were mainly associated with enzymes involved in the TCA cycle rather than specific writers/erasers of DNA methylation marks. This relationship was later confirmed by disturbing the embryonic metabolism through changes in α-ketoglutarate or succinate availability in culture media. This was sufficient to interfere with the DNA methylation dynamics despite the fact that blastocyst rates and total cell number were not quite affected. These results provide the first evidence of a relationship between epigenetic reprogramming and energy metabolism in bovine embryos. Likewise, levels of metabolites in culture media may be crucial for precise epigenetic reprogramming, with possible further consequences in the molecular control and differentiation of cells.
Stochastic effects play an important role in modeling the time evolution of chemical reaction systems in fields such as systems biology, where the concentrations of some constituent molecules can be low. The most common stochastic models for these systems are continuous time Markov chains, which track the molecular abundance of each chemical species. Often, these stochastic models are studied by computer simulations, which can quickly become computationally expensive. A common approach to reduce computational effort is to approximate the discrete valued Markov chain by a continuous valued diffusion process. However, existing diffusion approximations either do not respect the constraint that chemical concentrations are never negative (linear noise approximation) or are typically only valid until the concentration of some chemical species first becomes zero (chemical Langevin equation). In this paper, we propose (obliquely) reflected diffusions, which respect the non-negativity of chemical concentrations, as approximations for Markov chain models of chemical reaction networks. These reflected diffusions satisfy "constrained Langevin equations," in that they behave like solutions of chemical Langevin equations in the interior of the positive orthant and are constrained to the orthant by instantaneous oblique reflection at the boundary. To motivate their form, we first illustrate our constrained Langevin approximations for two simple examples. We then describe the general form of our proposed approximation. We illustrate the performance of our approximations through comparison of their stationary distributions for the two examples with those of the Markov chain model and through simulations of more complex examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.