The use of silver nanoparticles in food, food contact materials, dietary supplements and cosmetics has increased significantly owing to their antibacterial and antifungal properties. As a consequence, the need for validated rapid screening methods to assess their toxicity is necessary to ensure consumer safety. This study evaluated two widely used in vitro cell culture models, human liver HepG2 cells and human colon Caco2 cells, as tools for assessing the potential cytotoxicity of food- and cosmetic-related nanoparticles. The two cell culture models were utilized to compare the potential cytotoxicity of 20-nm silver. The average size of the silver nanoparticle determined by our transmission electron microscopy (TEM) analysis was 20.4 nm. The dynamic light scattering (DLS) analysis showed no large agglomeration of the silver nanoparticles. The concentration of the 20-nm silver solution determined by our inductively coupled plasma-mass spectrometry (ICP-MS) analysis was 0.962 mg ml(-1) . Our ICP-MS and TEM analysis demonstrated the uptake of 20-nm silver by both HepG2 and Caco2 cells. Cytotoxicity, determined by the Alamar Blue reduction assay, was evaluated in the nanosilver concentration range of 0.1 to 20 µg ml(-1) . Significant concentration-dependent cytotoxicity of the nanosilver in HepG2 cells was observed in the concentration range of 1 to 20 µg ml(-1) and at a higher concentration range of 10 to 20 µg ml(-1) in Caco2 cells compared with the vehicle control. A concentration-dependent decrease in dsDNA content was observed in both cell types exposed to nanosilver but not controls, suggesting an increase in DNA damage. The DNA damage was observed in the concentration range of 1 to 20 µg ml(-1) . Nanosilver-exposed HepG2 and Caco2 cells showed no cellular oxidative stress, determined by the dichlorofluorescein assay, compared with the vehicle control in the concentration range used in this study. A concentration-dependent decrease in mitochondria membrane potential in both nanosilver exposed cell types suggested increased mitochondria injury compared with the vehicle control. The mitochondrial injury in HepG2 cells was significant in the concentration range of 1 to 20 µg ml(-1) , but in Caco2 cells it was significant at a higher concentration range of 10 to 20 µg ml(-1) . These results indicated that HepG2 cells were more sensitive to nanosilver exposure than Caco2 cells. It is generally believed that cellular oxidative stress induces cytotoxicity of nanoparticles. However, in this study we did not detect any nanosilver-induced oxidative stress in either cell type at the concentration range used in this study. Our results suggest that cellular oxidative stress did not play a major role in the observed cytotoxicity of nanosilver in HepG2 and Caco2 cells and that a different mechanism of nanosilver-induced mitochondrial injury leads to the cytotoxicity. The HepG2 and Caco2 cells used this study appear to be targets for silver nanoparticles. The results of this study suggest that the differences in the mechanisms...
Table 1. The table shows the US federal departments, independent agencies, and commissions that are participating in the National Nanotechnology Initiative (NNI). a Departments, independent agencies, and commissions with budgets for nanotechnology research and development Other federal departments, independent agencies, and commissions that are participating Consumer Product Safety Commission
Two widely used in vitro cell culture models, human liver HepG2 cells and human colon Caco2 cells, and flow cytometry techniques were evaluated as tools for rapid screening of potential genotoxicity of food-related nanosilver. Comparative genotoxic potential of 20 nm silver was evaluated in HepG2 and Caco2 cell cultures by a flow cytometric-based in vitro micronucleus assay. The nanosilver, characterized by the dynamic light scattering, transmission electron microscopy and inductively coupled plasma-mass spectrometry analysis, showed no agglomeration of the silver nanoparticles. The inductively coupled plasma-mass spectrometry and transmission electron microscopy analysis demonstrated the uptake of 20 nm silver by both cell types. The 20 nm silver exposure of HepG2 cells increased the concentration-dependent micronucleus formation sevenfold at 10 µg ml(-1) concentration in attached cell conditions and 1.3-fold in cell suspension conditions compared to the vehicle controls. However, compared to the vehicle controls, the 20 nm silver exposure of Caco2 cells increased the micronucleus formation 1.2-fold at a concentration of 10 µg ml(-1) both in the attached cell conditions as well as in the cell suspension conditions. Our results of flow cytometric in vitro micronucleus assay appear to suggest that the HepG2 cells are more susceptible to the nanosilver-induced micronucleus formation than the Caco2 cells compared to the vehicle controls. However, our results also suggest that the widely used in vitro models, HepG2 and Caco2 cells and the flow cytometric in vitro micronucleus assay are valuable tools for the rapid screening of genotoxic potential of nanosilver and deserve more careful evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.