The intriguing physics of non-Hermitian systems satisfying parity-time (PT) symmetry has spurred a surge of both theoretical and experimental research in interleaved gain-loss systems for novel photonic devices. In this work, we investigate vertically stacked GaInP PT-symmetric nanodisk resonators arranged in two-dimensional periodic lattice using full-wave numerical simulations and scattering matrix theory. The proposed dielectric metasurface supports lasing spectral singularities with asymmetric reflection and highly anisotropic far-field scattering patterns. It offers a much broader design parameter space to control wavelength, scattering direction, and efficiency of optical emission when compared to the predominantly one-dimentional (1D) or quasi-1D structures studied so far. The proposed system with Q-factor
>
10
5
serves as a powerful platform for enhanced light-matter interaction by enabling extensive control of asymmetric light scattering, amplification, and unprecedented localization of electromagnetic fields.
Semiconductor nanolasers based on microdisks, photonic crystal cavities, and metallo-dielectric nanocavities have been studied during the last few decades for on-chip light source applications. However, practical realization of low threshold, room temperature semiconductor nanolasers is still a challenge due to the large surface-to-volume ratio of the nanostructures, which results in low optical gain and hence higher lasing threshold. Furthermore, the gain in nanostructures is an important parameter for designing all-dielectric metamaterial-based active applications. Here, we investigate the impact of p-type doping, compressive strain, and surface recombination on the gain spectrum and the spatial distribution of carriers in GaAs nanocylinders. Our analysis reveals that the lasing threshold can be lowered by choosing the right doping concentration in the active III-V material combined with compressive strain. This combination of strain and p-type doping shows 100× improvement in gain and approximately five times increase in modulation bandwidth for high-speed operation.
Electrical excitation of light using inelastic electron tunneling is a promising approach for the realization of ultra-compact on-chip optical sources with high modulation bandwidth. However, the practical implementation of these nanoscale light sources presents a challenge due to the low electron-to-photon transduction efficiencies. Here, we investigate designs for the enhancement of light generation and out-coupling in a periodic Ag-SiO2-Ag tunnel junction due to inelastic electron tunneling. The structure presents a unique advantage of a simple fabrication procedure as compared to the other reported structures. By efficiently coupling the gap plasmon mode and the lattice resonance, we achieve a resonant enhancement in the local density of optical states up to three orders of magnitude and enhanced radiative efficiency of ~0.53, 30% higher as compared to the uncoupled structure.
We numerically show switchable, wavelength-selective directional emission from Ag–SiO2–Ag tunnel junctions. The emission can be switched by selective excitation of the top electrode, paving the way for electrically-driven tunable light sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.