A new, three-dimensional cadmium based metal-organic framework [Cd(PDA)(tz)Cl(HO)]·3HO {PDA = 1,4-phenylenediacetate and tz = 1,2,4-triazolate}, 1, has been successfully synthesized using slow diffusion method at room temperature. The structure of compound 1 has been determined using single crystal X-ray diffraction. The triazolate ligands connect three different types of octahedral Cd ions to form a two-dimensional structure. The chloride ion and PDA ligands connect the two-dimensional layers to form a three-dimensional structure. The phase purity of 1 was confirmed by powder X-ray diffraction, thermogravimetric analysis, and IR spectroscopy. Aqueous dispersion of compound 1 gives intense luminescence emission at 290 nm upon excitation at 225 nm. This emission was used for the luminescence based detection of pesticides, especially azinphos-methyl, chlorpyrifos, and parathion in aqueous medium. The selectivity of pesticide detection remains unaltered even in the presence of surfactant molecules. The mechanisms of luminescence quenching were successfully explained by the combination of absorption of excitation light, resonance energy transfer, and the possibility of electron transfer. Experimental findings are also well supported by the density functional theory calculations. Selectivity of pesticides detection in real samples such as apple and tomato juice has also been observed.
A mild,
efficient, and one-pot protocol for three-component carbosilylation
of alkenes with imidazoheterocycle and silanes has been developed
by merging iron(II) and visible-light photocatalysis. This C–C
and C–Si bond-forming method provides functionalized organosilicon
derivatives having imidazoheterocycles moieties in good yields. The
reaction possibly proceeds through a radical pathway.
Selective isolation of soil Actinobacteria was undertaken to isolate a new class of antibiotics and bioactive molecules. A Streptomyces sp. PSAA01 (= MTCC 13,157), isolated from soil of Eastern Himalaya foothill was cultivated on a large scale for the production of the antimicrobial SM02. It has been found that the maximum amount of SM02 produced while PSAA01 was grown in ISP-2 medium (pH 7.0) for 7 days at 30 °C in shaking (180 rpm) condition. A significant zone of inhibition against Staphylococcus aureus MTCC 96 has been found with the crude cell-free culture media (50 µL) of 7 days grown PSAA01. After the purification and chemical structural characterization, we found that SM02 is a new antimicrobial having 746 dalton molecular weight. The compound SM02 contains pyrimidine moiety in it and is produced by a species of Streptomyces and thus we have named this antibiotic pyrimidomycin. The antimicrobial spectrum of pyrimidomycin has been found to be restricted in Gram-positive organisms with a MIC of 12 µg/mL. SM02 was found active against Mycobacterium sp. and also multi-drug resistant Gram-positive bacteria with similar potency and found to disrupt the bacterial cell wall. Pyrimidomycin also showed significant impairment in the biofilm formation by S. aureus. Furthermore, pyrimidomycin showed synergy with the most used antibiotic like ampicillin, vancomycin and chloramphenicol. Pyrimidomycin did not have cytotoxicity towards human cell lines indicating its limited activity within bacteria.
Colistin, considered a drug of last resort as it is effective towards multidrug-resistant Gram-negative bacterial infections. Oral administration of colistin in the poultry industry is a common practice, not only to prevent and reduce bacterial infections, but also as a rapid-growth promoter. Long-term exposure to any antibiotic will eventually lead to the development of bacterial resistance towards all antibiotics through various mechanisms in the physiological system and environment. Chicken is the most consumed source of animal protein for humans throughout the world. In addition, the manure of poultry, containing traces of the used antibiotics, is being used in farming. Exposure to excess amounts of colistin causes a great concern not only to the humans but to the environment as a whole. In the present contribution, colistin has been detected in chicken hepatocyte cells through in vivo confocal microscopy. In addition, the amount of colistin in the chicken excrements has been estimated. A simple chemosensor NAF, a dye-based on napthaldehyde furfural, was developed for the detection of colistin, supplemented with experimental evidence and theoretical calculations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.