Intestinal epithelial cells (IECs) overlying the villi play a prominent role in absorption of digested nutrients and establish a barrier that separates the internal milieu from potentially harmful microbial antigens. Several mechanisms by which antigens of dietary and microbial origin enter the body have been identified; however whether IECs play a role in antigen uptake is not known. Using in vivo imaging of the mouse small intestine, we investigated whether epithelial cells (enterocytes) play an active role in the uptake (sampling) of lumen antigens. We found that small molecular weight antigens such as chicken ovalbumin, dextran, and bacterial LPS enter the lamina propria, the loose connective tissue which lies beneath the epithelium via goblet cell associated passageways. However, epithelial cells overlying the villi can internalize particulate antigens such as bacterial cell debris and inert nanoparticles (NPs), which are then found co-localizing with the CD11c+ dendritic cells in the lamina propria. The extent of NP uptake by IECs depends on their size: 20–40 nm NPs are taken up readily, while NPs larger than 100 nm are taken up mainly by the epithelial cells overlying Peyer's patches. Blocking NPs with small proteins or conjugating them with ovalbumin does not inhibit their uptake. However, the uptake of 40 nm NPs can be inhibited when they are administered with an endocytosis inhibitor (chlorpromazine). Delineating the mechanisms of antigen uptake in the gut is essential for understanding how tolerance and immunity to lumen antigens are generated, and for the development of mucosal vaccines and therapies.
Food or water-borne enteric pathogens invade their hosts via intestinal mucosal surfaces, thus developing effective oral vaccines would greatly reduce the burden of infectious diseases. The nature of the antigen, as well as the mode of its internalization in the intestinal mucosa affects the ensuing immune response. We show that model protein antigen ovalbumin (Ova) given per-orally (p.o.) induces oral tolerance (OT), characterized by systemic IgG1—dominated antibody response, which cannot be boosted by sub-cutaneous (s.c.) immunization with Ova in complete Freund’s adjuvant (CFA). Intestinal IgA generated in response to Ova feeding diminished over time and was abrogated by s.c. immunization with Ova+CFA. Humoral response to Ova was altered by administering Ova conjugated to 20 nm nanoparticles (NP-Ova). P.o. administration of NP-Ova induced systemic IgG1/IgG2c, and primed the intestinal mucosa for secretion of IgA. These responses were boosted by secondary s.c. immunization with Ova+CFA or p.o. immunization with NP-Ova. However, only in s.c.-boosted mice serum and mucosal antibody titers remained elevated for 6 months after priming. In contrast, s.c. priming with NP-Ova induced IgG1-dominated serum antibodies, but did not prime the intestinal mucosa for secretion of IgA, even after secondary p.o. immunization with NP-Ova. These results indicate that Ova conjugated to NPs reaches the internal milieu in an immunogenic form and that mucosal immunization with NP-Ova is necessary for induction of a polarized Th1/Th2 immune response, as well as intestinal IgA response. In addition, mucosal priming with NP-Ova, followed by s.c. boosting induces superior systemic and mucosal memory responses. These findings are important for the development of efficacious mucosal vaccines.
The female reproductive tract (FRT) includes the oviducts (fallopian tubes), uterus, cervix and vagina. A layer of columnar epithelium separates the endocervix and uterus from the outside environment, while the vagina is lined with stratified squamous epithelium. The mucosa of the FRT is exposed to antigens originating from microflora, and occasionally from infectious microorganisms. Whether epithelial cells (ECs) of the FRT take up (sample) the lumen antigens is not known. To address this question, we examined the uptake of 20–40 nm nanoparticles (NPs) applied vaginally to mice which were not treated with hormones, epithelial disruptors, or adjuvants. We found that 20 and 40 nm NPs are quickly internalized by ECs of the upper FRT and within one hour could be observed in the lymphatic ducts that drain the FRT, as well as in the ileac lymph nodes (ILNs) and the mesenteric lymph nodes (MLNs). Chicken ovalbumin (Ova) conjugated to 20 nm NPs (NP-Ova) when administered vaginally reaches the internal milieu in an immunologically relevant form; thus vaginal immunization of mice with NP-Ova induces systemic IgG to Ova antigen. Most importantly, vaginal immunization primes the intestinal mucosa for secretion of sIgA. Sub-cutaneous (s.c) boosting immunization with Ova in complete Freund's adjuvant (CFA) further elevates the systemic (IgG1 and IgG2c) as well as mucosal (IgG1 and sIgA) antibody titers. These findings suggest that the modes of antigen uptake at mucosal surfaces and pathways of antigen transport are more complex than previously appreciated.
Chlamydia trachomatis is a Gram-negative bacterial pathogen and a major cause of sexually transmitted disease and preventable blindness. In women, infections with C. trachomatis may lead to pelvic inflammatory disease (PID), ectopic pregnancy, chronic pelvic pain, and infertility. In addition to infecting the female reproductive tract (FRT), Chlamydia spp. are routinely found in the gastro-intestinal (GI) tract of animals and humans and can be a reservoir for reinfection of the FRT. Whether Chlamydia disseminates from the FRT to the GI tract via internal routes remains unknown. Using mouse-specific C. muridarum as a model pathogen we show that Chlamydia disseminates from the FRT to the GI tract in a stepwise manner, by first infecting the FRT-draining iliac lymph nodes (ILNs), then the spleen, then the GI tract. Tissue CD11c+ DCs mediate the first step: FRT to ILN Chlamydia transport, which relies on CCR7:CCL21/CCL19 signaling. The second step, Chlamydia transport from ILN to the spleen, also relies on cell transport. However, this step is dependent on cell migration mediated by sphingosine 1-phosphate (S1P) signaling. Finally, spleen to GI tract Chlamydia spread is the third critical step, and is significantly hindered in splenectomized mice. Inhibition of Chlamydia dissemination significantly reduces or precludes the induction of Chlamydia-specific serum IgG antibodies, presence of which is correlated with FRT pathology in women. This study reveals important insights in context of Chlamydia spp. pathogenesis and will inform the development of therapeutic targets and vaccines to combat this pathogen.
In this work, we report a protocol for synthesizing nanosize ovalbumin-functionalized polydiacetylene (PDA) liposomes (LP-Ova). We show that LP-Ova administered per-orally (p.o.) and subcutaneously (s.c.), without the use of adjuvants, induces high serum IgG1 titers. As reported previously using polystyrene nanoparticles (NPs), p.o.-primed mice developed high titers of IgG2c and intestinal IgA following s.c. boosting immunization with LP-Ova. Mice that received a single s.c. immunization with LP-Ova did not develop serum IgG2c or intestinal IgA antibodies. Additionally, in s.c.-immunized mice serum IgG1 titers decreased significantly by 3 months after immunization. In contrast, in mice primed p.o. and boosted s.c. with LP-Ova, serum IgG1/IgG2c, and intestinal IgA antibody titers remained stable. Administration of LPs exerted no adverse effects on immunized mice as no morbidity or signs of toxicity were observed for the duration of the studies. These results indicate that antigen-conjugated liposomes are immunogenic and confirm a previous report that mucosal priming followed by a s.c. boosting immunization is the most effective strategy for inducing long-lasting mucosal IgA, as well as a polarized Th1/Th2 systemic response. In addition to being biodegradable and easily functionalized by conjugation, liposomes have a hollow core which can also be loaded with cargo, allowing for a targeted delivery of multiple antigens (or drugs) simultaneously. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 557-565, 2017.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.