Investment in SARS-CoV-2 sequencing in Africa over the past year has led to a major increase in the number of sequences generated, now exceeding 100,000 genomes, used to track the pandemic on the continent. Our results show an increase in the number of African countries able to sequence domestically, and highlight that local sequencing enables faster turnaround time and more regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and shed light on the distinct dispersal dynamics of Variants of Concern, particularly Alpha, Beta, Delta, and Omicron, on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve, while the continent faces many emerging and re-emerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century.
BackgroundAfrican swine fever (ASF) is a highly lethal and economically significant disease of domestic pigs in Eastern Africa particularly in Uganda where outbreaks regularly occur. Sequence analysis of variable genome regions have been extensively used for molecular epidemiological studies of African swine fever virus (ASFV) isolates. By combining p72, P54 and pB602L (CVR), a high level resolution approach is achieved for viral discrimination. The major aim of this study therefore, was to investigate the genetic relatedness of ASF outbreaks that occurred between 2010 and 2013 in Uganda to contribute to the clarification of the epidemiological situation over a four year period.MethodsTissue samples from infected domestic pigs associated with an ASF outbreak from 15 districts in Uganda were confirmed as being infected with ASFV using a p72 gene-based polymerase chain reaction amplification (PCR) assay recommended by OIE. The analysis was conducted by genotyping based on sequence data from three single copy ASFV genes. The E183L gene encoding the structural protein P54 and part of the gene encoding the p72 protein was used to delineate genotypes. Intra-genotypic resolution of viral relationships was achieved by analysis of tetramer amino acid repeats within the hypervariable CVR of the B602L gene.ResultsTwenty one (21) ASF outbreaks were confirmed by the p72 ASF diagnostic PCR, however; only 17 isolates were successfully aligned after sequencing. Our entire isolates cluster with previous ASF viruses in genotype IX isolated in Uganda and Kenya using p72 and P54 genes. Analysis of the CVR gene generated three sub-groups one with 23 tetrameric amino acid repeats (TRS) with an additional CAST sequence, the second with 22 TRS while one isolate Ug13. Kampala1 had 13 TRS.ConclusionWe identified two new CVR subgroups different from previous studies. This study constitutes the first detailed assessment of the molecular epidemiology of ASFV in domestic pigs in the different regions of Uganda.
BackgroundAfrican swine fever (ASF) is a contagious viral disease which can cause up to 100% mortality among domestic pigs leading to serious socio-economic impact on people’s livelihoods. ASF is endemic in Uganda and there is paucity of information on the epidemiology of the disease. The major aim of this study was to determine the seroprevalence and prevalence of African swine fever virus (ASFV) in apparently healthy slaughter pigs at Wambizi slaughterhouse in Kampala city, Uganda. We also estimated the presence of ASFV antibodies and circulating viral antigens in pigs from selected districts of Uganda during targeted surveillance. We analysed 540 and 181 blood samples collected from slaughter pigs and pigs from targeted surveillance districts respectively.ResultsThe prevalence of ASFV in slaughter pigs was 52.96% (95% CI, 48.75-57.14) and 11.5% (95% CI, 9.06-14.45) by ELISA and PCR respectively. In surveillance districts, the proportion of ASFV positive pigs was 53.59% (95% CI, 46.33-60.71) and 0.55% (95% CI, 0.1-3.06) by ELISA and PCR respectively.ConclusionThe study has found out a high seroprevalence of ASFV antibodies in apparently healthy slaughter pigs and also a high proportion of ASFV antibody seropositive pigs in surveyed districts in Uganda indicating exposure to ASFV. However, there was a lower prevalence of ASFV infection implying that there could be low virulent strains of ASFV circulating in domestic pigs in Uganda which requires further investigation.
Large-scale, population-based genomic studies have provided a context for modern medical genetics. Among such studies, however, African populations have remained relatively underrepresented. The breadth of genetic diversity across the African continent argues for an exploration of local genomic context to facilitate burgeoning disease mapping studies in Africa. We sought to characterize genetic variation and to assess population substructure within a cohort of HIV-positive children from Botswana-a Southern African country that is regionally underrepresented in genomic databases. Using whole-exome sequencing data from 164 Batswana and comparisons with 150 similarly sequenced HIV-positive Ugandan children, we found that 13%-25% of variation observed among Batswana was not captured by public databases. Uncaptured variants were significantly enriched (p = 2.2 × 10) for coding variants with minor allele frequencies between 1% and 5% and included predicted-damaging non-synonymous variants. Among variants found in public databases, corresponding allele frequencies varied widely, with Botswana having significantly higher allele frequencies among rare (<1%) pathogenic and damaging variants. Batswana clustered with other Southern African populations, but distinctly from 1000 Genomes African populations, and had limited evidence for admixture with extra-continental ancestries. We also observed a surprising lack of genetic substructure in Botswana, despite multiple tribal ethnicities and language groups, alongside a higher degree of relatedness than purported founder populations from the 1000 Genomes project. Our observations reveal a complex, but distinct, ancestral history and genomic architecture among Batswana and suggest that disease mapping within similar Southern African populations will require a deeper repository of genetic variation and allelic dependencies than presently exists.
Purpose The Collaborative African Genomics Network (CAfGEN) aims to establish sustainable genomics research programs in Botswana and Uganda through long-term training of Ph.D. students from these countries at Baylor College of Medicine. Here we present an overview of the CAfGEN Ph.D. training program alongside trainees’ perspectives on their involvement. Background Historically, collaborations between High Income Countries (HICs) and Low and Middle Income Countries (LMICs), or North-South collaborations, have been criticized for the lack of a mutually beneficial distribution of resources and research findings, often undermining LMICs. CAfGEN purposes to address this imbalance in the genomics field through a program of technology and expertise transfer to the participating LMICs. Methods An overview of the training program is presented. Trainees from the CAfGEN project summarized their experiences, looking specifically at the training model, benefits of the program, challenges encountered relating to the cultural transition, and program outcomes after the first two years. Conclusion Collaborative training programs like CAfGEN will not only help establish sustainable long-term research initiatives in LMICs, but foster stronger North-South and South-South networks. The CAfGEN model offers a framework for the development of training programs aimed at genomics education for those for whom genomics is not their “first language.”
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.