An alternative to deploying a single robot of high complexity can be to utilize robot swarms comprising large numbers of identical, and much simpler, robots. Such swarms have been shown to be adaptable, fault-tolerant and widely applicable. However, designing individual robot algorithms to ensure effective and correct overall swarm behaviour is actually very difficult. While mechanisms for assessing the effectiveness of any swarm algorithm before deployment are essential, such mechanisms have traditionally involved either computational simulations of swarm behaviour, or experiments with robot swarms themselves. However, such simulations or experiments cannot, by their nature, analyse all possible swarm behaviours. In this paper, we will develop and apply the use of automated probabilistic formal verification techniques to robot swarms, involving an exhaustive mathematical analysis, in order to assess whether swarms will indeed behave as required. In particular we consider a foraging robot scenario to which we apply probabilistic model checking.
Bradford Scholars -how to deposit your paper
Overview
Copyright check• Check if your publisher allows submission to a repository.• Use the Sherpa RoMEO database if you are not sure about your publisher's position or email openaccess@bradford.ac.uk.
Today’s factories are considered as smart ecosystems with humans, machines and devices interacting with each other for efficient manufacturing of products. Industry 4.0 is a suite of enabler technologies for such smart ecosystems that allow transformation of industrial processes. When implemented, Industry 4.0 technologies have a huge impact on efficiency, productivity and profitability of businesses. The adoption and implementation of Industry 4.0, however, require to overcome a number of practical challenges, in most cases, due to the lack of modernisation and automation in place with traditional manufacturers. This paper presents a first of its kind case study for moving a traditional food manufacturer, still using the machinery more than one hundred years old, a common occurrence for small- and medium-sized businesses, to adopt the Industry 4.0 technologies. The paper reports the challenges we have encountered during the transformation process and in the development stage. The paper also presents a smart production control system that we have developed by utilising AI, machine learning, Internet of things, big data analytics, cyber-physical systems and cloud computing technologies. The system provides novel data collection, information extraction and intelligent monitoring services, enabling improved efficiency and consistency as well as reduced operational cost. The platform has been developed in real-world settings offered by an Innovate UK-funded project and has been integrated into the company’s existing production facilities. In this way, the company has not been required to replace old machinery outright, but rather adapted the existing machinery to an entirely new way of operating. The proposed approach and the lessons outlined can benefit similar food manufacturing industries and other SME industries.
Abstract. Robot swarms provide a way for a number of simple robots to work together to carry out a task. While swarms have been found to be adaptable, fault-tolerant and widely applicable, designing individual robot algorithms so as to ensure effective and correct swarm behaviour is very difficult. In order to assess swarm effectiveness, either experiments with real robots or computational simulations of the swarm are usually carried out. However, neither of these involve a deep analysis of all possible behaviours. In this paper we will utilise automated formal verification techniques, involving an exhaustive mathematical analysis, in order to assess whether our swarms will indeed behave as required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.