The objective of this study was to screen Streptomyces spp. for biological control of root and stem rot (Sclerotium rolfsii) and bacterial wilt (Ralstonia solanacearum), the very destructive diseases of chili pepper in Thailand. About 265 isolates of Streptomyces spp. were tested for their inhibitory effects on S. rolfsii mycelial growth on dual culture plates. Then, 14 promising isolates were further tested for their effects on R. solanacearum growth. Three effective isolates further identified as S. mycarofaciens SS-2-243, S.philanthi RL-1-178 and S. philanthi RM-1-138 were selected and proved to produce both antifungal and antibacterial substances in the culture medium. S. philanthi RM-1-138 strongly inhibited seed germination and seedling growth of chili pepper in laboratory tests. Therefore, it was not used in the following studies. When tested in greenhouse conditions, the efficacy of S. philanthi RL-1-178 in suppressing Sclerotium root and stem rot of chili pepper was approximately equal to that of Trichoderma harzianum NR-1-52 or that of carboxin treatment. S. mycarofaciens SS-2-243 and S. philanthi RL-1-178 suppressed Ralstonia wilt of chili pepper in a way that was similar to streptomycin sulfate treatment and it was observed that T. harzianum NR-1-52 had no effect on the bacterial wilt. Under field conditions where the soil was inoculated with two pathogens, the results showed that S. philanthi RL-1-178 could protect the chili pepper plants from S. rolfsii and R. solanacearum infection better than S. mycarofaciens SS-2-243 or T. harzianum NR-1-52. S. philanthi RL-1-178 treatment resulted in 58.75% survival of chili pepper plants and its efficacy was not significantly different from the carboxin-andstreptomycin sulfate treatment.
Streptomyces is a genus known for its ability to protect plants against many pathogens and various strains of this bacteria have been used as biological control agents. In this study, the efficacy of Streptomyces philanthi RM-1-138, S. philanthi RL-1-178, and S. mycarofaciens SS-2-243 to control various strains of Botrytis cinerea was evaluated both in vitro and in vivo.In vitro studies using confrontation tests on PDA plates indicated that the three strains of Streptomyces spp. inhibited the growth of 41 strains of B. cinerea. Volatile compounds produced by Streptomyces spp. had an influence on the growth of 10 strains of B. cinerea while its culture filtrate at low concentration (diluted at 10 -3 ) showed a complete inhibition (100%) of spore germination of B. cinerea strain BC1. A significant protection efficacy of tomato against B. cinerea was observed on both whole-plant test (57.4%) and detached leaf test (60.1%) with S. philanti RM-1-138. Moreover, this antagonistic strain had a preventive and a curative effect.
2These results indicated that S. philanthi RM-1-138 may have the potential to control gray mold caused by B. cinerea on tomato but further work is required to enhance its efficacy and its survival in planta.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.