Anthropogenic activities in coastal regions are endangering marine ecosystems. Coastal waters classified as case-II waters are especially complex due to the presence of different constituents. Recent advances in remote sensing technology have enabled to capture the spatiotemporal variability of the constituents in coastal waters. The present study evaluates the potential of remote sensing using machine learning techniques, for improving water quality estimation over the coastal waters of Hong Kong. Concentrations of suspended solids (SS), chlorophyll-a (Chl-a), and turbidity were estimated with several machine learning techniques including Artificial Neural Network (ANN), Random Forest (RF), Cubist regression (CB), and Support Vector Regression (SVR). Landsat (5,7,8) reflectance data were compared with in situ reflectance data to evaluate the performance of machine learning models. The highest accuracies of the water quality indicators were achieved by ANN for both, in situ reflectance data (89%-Chl-a, 93%-SS, and 82%-turbidity) and satellite data (91%-Chl-a, 92%-SS, and 85%-turbidity. The water quality parameters retrieved by the ANN model was further compared to those retrieved by “standard Case-2 Regional/Coast Colour” (C2RCC) processing chain model C2RCC-Nets. The root mean square errors (RMSEs) for estimating SS and Chl-a were 3.3 mg/L and 2.7 µg/L, respectively, using ANN, whereas RMSEs were 12.7 mg/L and 12.9 µg/L for suspended particulate matter (SPM) and Chl-a concentrations, respectively, when C2RCC was applied on Landsat-8 data. Relative variable importance was also conducted to investigate the consistency between in situ reflectance data and satellite data, and results show that both datasets are similar. The red band (wavelength ≈ 0.665 µm) and the product of red and green band (wavelength ≈ 0.560 µm) were influential inputs in both reflectance data sets for estimating SS and turbidity, and the ratio between red and blue band (wavelength ≈ 0.490 µm) as well as the ratio between infrared (wavelength ≈ 0.865 µm) and blue band and green band proved to be more useful for the estimation of Chl-a concentration, due to their sensitivity to high turbidity in the coastal waters. The results indicate that the NN based machine learning approaches perform better and, thus, can be used for improved water quality monitoring with satellite data in optically complex coastal waters.
Abstract:The Himalayan mountain forest ecosystem has been degrading since the British ruled the area in the 1850s. Local understanding of the patterns and processes of degradation is desperately required to devise management strategies to halt this degradation and provide long-term sustainability. This work comprises a satellite image based study in combination with national expert validation to generate sub-district level statistics for forest cover over the Western Himalaya, Pakistan, which accounts for approximately 67% of the total forest cover of the country. The time series of forest cover maps (1990, 2000, 2010) reveal extensive deforestation in the area. Indeed, approximately 170,684 ha of forest has been lost, which amounts to 0.38% per year clear cut or severely degraded during the last 20 years. A significant increase in the rate of deforestation is observed in the second half of the study period, where much of the loss occurs at the western borders along with Afghanistan. The current study is the first systematic and comprehensive effort to map changes to forest cover in Northern Pakistan. Deforestation hotspots identified at the sub-district level provide important insight into deforestation patterns, which may facilitate the development of appropriate forest conservation and management strategies in the country.
This study assesses the applicability of remote sensing data for retrieval of key drought indicators including the degree of moisture deficiency, drought duration and areal extent of drought within different land cover types across the landscape. A Normalized Vegetation Supply Water Index (NVSWI) is devised, combining remotely sensed climate data to retrieve key drought indicators over different vegetation cover types and a lag-time relationship is established based on preceding rainfall. The results indicate that during the major drought event of spring 2010, Evergreen Forest (EF) experienced severe dry conditions for 48 days fewer than Cropland (CL) and Shrubland (SL). Testing of vegetation response to drought conditions with different lag-time periods since the last rainfall indicated a highest correlation for CL and SL with the 4th lag period (i.e., 64 days) whereas EF exhibited maximum correlation with the 5th lag period (i.e., 80 days). Evergreen Forest, which includes tree crops, appears to act as a green reservoir of water, and is more resistant than CL and SL to drought due to its water retention capacity with deeper roots to tap sub-surface water. Identifying differences in rainfall lag-time relationships among land cover types using a remote sensing-based integrated drought index enables more accurate drought prediction, and can thus assist in the development of more specific drought adaptation strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.