Motivation
Genome-wide identification of the transcriptomic responses of human cell lines to drug treatments is a challenging issue in medical and pharmaceutical research. However, drug-induced gene expression profiles are largely unknown and unobserved for all combinations of drugs and human cell lines, which is a serious obstacle in practical applications.
Results
Here, we developed a novel computational method to predict unknown parts of drug-induced gene expression profiles for various human cell lines and predict new drug therapeutic indications for a wide range of diseases. We proposed a tensor-train weighted optimization (TT-WOPT) algorithm to predict the potential values for unknown parts in tensor-structured gene expression data. Our results revealed that the proposed TT-WOPT algorithm can accurately reconstruct drug-induced gene expression data for a range of human cell lines in the Library of Integrated Network-based Cellular Signatures. The results also revealed that in comparison with the use of original gene expression profiles, the use of imputed gene expression profiles improved the accuracy of drug repositioning. We also performed a comprehensive prediction of drug indications for diseases with gene expression profiles, which suggested many potential drug indications that were not predicted by previous approaches.
Supplementary information
Supplementary data are available at Bioinformatics online.
Developing drugs with anticancer activity and low toxic side-effects at low costs is a challenging issue for cancer chemotherapy. In this work, we propose to use molecular pathways as the therapeutic targets and develop a novel computational approach for drug repositioning for cancer treatment. We analyzed chemically induced gene expression data of 1112 drugs on 66 human cell lines and searched for drugs that inactivate pathways involved in the growth of cancer cells (cell cycle) and activate pathways that contribute to the death of cancer cells (e.g., apoptosis and p53 signaling). Finally, we performed a large-scale prediction of potential anticancer effects for all the drugs and experimentally validated the prediction results via three in vitro cellular assays that evaluate cell viability, cytotoxicity, and apoptosis induction. Using this strategy, we successfully identified several potential anticancer drugs. The proposed pathway-based method has great potential to improve drug repositioning research for cancer treatment.
In this study, we selected 181 nematode glycogenes that are orthologous to human glycogenes and examined their RNAi phenotypes. The results are deposited in the Caenorhabditis elegans Glycogene Database (CGGDB) at AIST, Tsukuba, Japan. The most prominent RNAi phenotypes observed are disruptions of cell cycle progression in germline mitosis/meiosis and in early embryonic cell mitosis. Along with the previously reported roles of chondroitin proteoglycans, glycosphingolipids and GPI-anchored proteins in cell cycle progression, we show for the first time that the inhibition of the functions of N-glycan synthesis genes (cytoplasmic alg genes) resulted in abnormal germline formation, ER stress and small body size phenotypes. The results provide additional information on the roles of glycoconjugates in the cell cycle progression mechanisms of germline and embryonic cells.
Glycans play important roles in cell communication, protein interaction, and immunity, and structural changes in glycans are associated with the regulation of a range of biological pathways involved in disease. However, our understanding of the detailed relationships between specific diseases and glycans is very limited. In this study, we proposed an omics-based method to investigate the correlations between glycans and a wide range of human diseases. We analyzed the gene expression patterns of glycogenes (glycosyltransferases and glycosidases) for 79 different diseases. A biological pathway-based glycogene signature was constructed to identify the alteration in glycan biosynthesis and the associated glycan structures for each disease state. The degradation of N-glycan and keratan sulfate, for example, may promote the growth or metastasis of multiple types of cancer, including endometrial, gastric, and nasopharyngeal. Our results also revealed that commonalities between diseases can be interpreted using glycogene expression patterns, as well as the associated glycan structure patterns at the level of the affected pathway. The proposed method is expected to be useful for understanding the relationships between glycans, glycogenes, and disease and identifying disease-specific glycan biomarkers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.